WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Тео́рия поле́й — раздел математики, занимающийся изучением свойств полей, то есть структур, обобщающих свойства сложения, вычитания, умножения и деления чисел.

История

Коммутативность поля

Первые определения поля не включали в себя требование коммутативности умножения, однако современный термин «поле» всегда подразумевает его коммутативность. Структура, удовлетворяющая всем свойствам поля, кроме коммутативности умножения в российской традиции называется телом. Однако по-немецки поле называют Körper (поэтому буква часто употребляется для обозначения поля), а по-французски — corps, что также переводится как «тело».

Приложения теории полей

Понятие поля используется, например, при определении векторного пространства и, следовательно, представляет большую важность для линейной алгебры. Так же и алгебраическое многообразие — основной объект изучения алгебраической геометрии — определяется над произвольным полем. Алгебраическая теория чисел занимается изучением свойств алгебраических числовых полей и их колец целых; и, конечно, использует результаты классической теории полей.

Конечные поля используются в теории чисел и теории кодирования. В частности, поля характеристики 2 полезно рассматривать в информатике.

Некоторые полезные теоремы

См. также

Примечания

  • Allenby, R.B.J.T. Rings, Fields and Groups. — Butterworth-Heinemann, 1991. — ISBN ISBN 0-340-54440-6.
  • Blyth, T.S. Groups, rings and fields: Algebra through practice, Book 3 / T.S. Blyth, Robertson. — Cambridge University Press, 1985. — ISBN ISBN 0-521-27288-2.
  • Blyth, T.S. Rings, fields and modules: Algebra through practice, Book 6 / T.S. Blyth, Robertson. — Cambridge University Press, 1985. — ISBN ISBN 0-521-27291-2.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии