Касательный вектор — элемент касательного пространства, например элемент касательной прямой к кривой, касательной плоскости к поверхности так далее.
Касательным вектором к графику функции в точке называется вектор с компонентами
Касательным вектором к гладкому многообразию в точке называется оператор , сопоставляющий каждой гладкой функции число и обладающий следующими свойствами:
Множество всех таких операторов в точке имеет естественную структуру линейного пространства, именно:
Совокупность всех касательных векторов в точке образует векторное пространство, которое называется касательным пространством в точке . Совокупность всех касательных векторов во всех точках многообразия образует векторное расслоение, которое называется касательным расслоением.
Понятие касательного вектора к многообразию в точке обобщает понятие касательного вектора к гладкому пути в пространстве Rn. Пусть в Rn задан гладкий путь :
Тогда существует единственный прямолинейный и равномерный путь , который его касается в момент времени t0:
Касание двух путей и означает, что ; отношения касания путей в точке есть отношение эквивалентности. Kасательный вектор в точке x0 можно определить как класс эквивалентности всех гладких путей, проходящих через точку x0 в один и тот же момент времени, и касающихся друг с другом в этой точке.
Касательный вектор в точке гладкого подмногообразия евклидова пространства — вектор скорости в точке некоторой кривой в .
Иначе говоря, касательный вектор в точке подмногообразия, локально заданного параметрически
есть произвольная линейная комбинация частных производных .
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .