Гипотеза Тёплица, также известная как гипотеза о вписанном квадрате — нерешённая проблема геометрии. Формулировка гипотезы:
Гипотеза Тёплица верна для выпуклых кривых, кусочно-гладких кривых и в других специальных случаях. Проблема была сформулирована Отто Тёплицем в 1911 году[1]. Ранние положительные результаты были получены Арнольдом Эмчем[2] и Львом Шнирельманом[3]. По состоянию на 2016 г. гипотеза в общем случае остаётся не доказанной.
Пусть C — кривая Жордана. Многоугольник P вписан в C , если все вершины P принадлежат C. Проблема вписанного квадрата заключается в следующем:
При этом не требуется, чтобы вершины квадрата находились в каком-либо определённом порядке.
Для некоторых кривых, например, для окружности и квадрата, можно указать бесконечно много вписанных квадратов. В тупоугольный треугольник можно вписать ровно один квадрат.
Вальтер Стромквист доказал, что в каждую локально монотонную простую плоскую кривую можно вписать квадрат[4]. Доказательство применимо к кривым C, обладающим свойством локальной монотонности: для любой точки p, лежащей на C, существует такая окрестность U(p), что ни одна хорда C в этой окрестности не является параллельной заданному направлению n(p) (направлению оси ординат). К локально монотонным кривым относятся все выпуклые кривые и все кусочно-заданные непрерывно дифференцируемые кривые без точек возврата.
Утвердительный ответ также известен для центрально симметричных кривых[5].
Известно, что для любого заданного треугольника T и жордановой кривой C существует треугольник, подобный T и вписанный в C[6][7]. Более того, множество вершин таких треугольников является плотным в C[8]. В частности, всегда существует вписанный равносторонний треугольник. Также в любую жорданову кривую можно вписать прямоугольник.
В некоторых обобщениях проблемы вписанного квадрата рассматриваются вписанные в кривые многоугольники. Существуют также обобщения для многомерных евклидовых пространств. Так, Стромквист доказал, что в любую непрерывную замкнутую кривую , удовлетворяющую «условию A», можно вписать четырёхугольник с равными сторонами и равными диагоналями; «условие A» заключается в том, что никакие две хорды C в соответствующей окрестности любой точки не должны быть перпендикулярными[4]. Этот класс кривых включает все кривые C2. Нильсен и Райт доказали, что любой симметричный континуум содержит вписанные прямоугольники[5]. Генрих Гуггенхаймер доказал, что любая гиперповерхность, C3-диффеоморфная сфере Sn−1, содержит 2n вершин правильного евклидова гиперкуба[9].
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .