WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Плоскость Фано, Проективная плоскость над полем из двух элементов, один из самых простых объектов геометрии Галуа.

Геометрия Галуа (названа именем французского математика 19-го века Эвариста Галуа) — это раздел конечной геометрии, рассматривающий алгебраическую и аналитическую геометрию над конечными полями (или полями Галуа)[1]. В более узком смысле геометрию Галуа можно определить как проективное пространство над конечным полем[2].

Введение

Объектами изучения служат векторные пространства, аффинные и проективные пространства над конечными полями и различные структуры, содержащихся в них. В частности, дуги[en], овалы, гиперовалы, униталы[en], блокирующие множества[en], овалы, многообразия и другие конечные аналоги структур, имеющихся в бесконечных геометриях.

Джордж Конуэлл продемонстрировал геометрию Галуа в 1910, когда описывал решение задачи Киркмана о школьницах[en] как разбиение множества скрещивающихся прямых в PG(3,2), трёхмерной проективной геометрии над полем Галуа GF(2)[en][3]. Подобно методам геометрии прямых в пространстве над полем с характеристикой 0, Конуэлл использовал плюккеровы координаты в PG(5,2) и отождествил точки, представляющие прямые в PG(3,2) с точками, лежащими на квадрике Кляйна[en].

В 1955 году Беньямино Сегре описал овалы для нечётных q. Теорема Сегре[en] утверждает, что в геометрии Галуа нечётного порядка (проективная алоскость, определённая над конечным полем с нечётной характеристикой) любой овал является коническим сечением. На Международном конгрессе математиков 1958 года Сегре представил обзор имеющихся на то время результатов в геометрии Галуа[4].

См. также

Примечания

  1. "Проективные пространства над конечными полями, известные также как геометрии Галуа, ...", (Hirschfeld, Thas 1992)
  2. Conwell, 1910, с. 60–76.
  3. Segre, 1958.

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии