Геометрия Галуа (названа именем французского математика 19-го века Эвариста Галуа) — это раздел конечной геометрии, рассматривающий алгебраическую и аналитическую геометрию над конечными полями (или полями Галуа)[1]. В более узком смысле геометрию Галуа можно определить как проективное пространство над конечным полем[2].
Объектами изучения служат векторные пространства, аффинные и проективные пространства над конечными полями и различные структуры, содержащихся в них. В частности, дуги[en], овалы, гиперовалы, униталы[en], блокирующие множества[en], овалы, многообразия и другие конечные аналоги структур, имеющихся в бесконечных геометриях.
Джордж Конуэлл продемонстрировал геометрию Галуа в 1910, когда описывал решение задачи Киркмана о школьницах[en] как разбиение множества скрещивающихся прямых в PG(3,2), трёхмерной проективной геометрии над полем Галуа GF(2)[en][3]. Подобно методам геометрии прямых в пространстве над полем с характеристикой 0, Конуэлл использовал плюккеровы координаты в PG(5,2) и отождествил точки, представляющие прямые в PG(3,2) с точками, лежащими на квадрике Кляйна[en].
В 1955 году Беньямино Сегре описал овалы для нечётных q. Теорема Сегре[en] утверждает, что в геометрии Галуа нечётного порядка (проективная алоскость, определённая над конечным полем с нечётной характеристикой) любой овал является коническим сечением. На Международном конгрессе математиков 1958 года Сегре представил обзор имеющихся на то время результатов в геометрии Галуа[4].
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .