Рафаэль Бомбелли | |
---|---|
итал. Rafael Bombelli | |
![]() | |
Дата рождения | 1526 |
Место рождения | Болонья |
Дата смерти | 1572 |
Место смерти | вероятно, Рим |
Страна | Папская область |
Научная сфера | математика |
Рафаэль Бомбелли (итал. Rafael Bombelli; ок. 1526, Болонья — 1572, вероятно, Рим) — итальянский математик, инженер-гидравлик. Настоящая фамилия: Маццоли (Mazzoli), ему пришлось сменить фамилию при возвращении в Болонью, потому что его дед был некогда казнён как заговорщик.
Известен тем, что ввёл в математику комплексные числа как легальный объект и разработал базовые правила действий с ними. Перевёл и опубликовал «Арифметику» Диофанта; благодаря этому событию начинается история теории чисел в Европе.
Рафаэль Маццоли родился в Болонье в семье торговца шерстью Антонио Маццоли и дочери портного Диаманте Скудьери (Diamante Scudieri), он был старшим из шести их детей. Учился архитектуре. Как раз в это время открытия дель Ферро и Тартальи вызвали подъём массового интереса к математике, который захватил и Бомбелли.
Будучи по делам в Риме, Бомбелли познакомился с профессором университета Антонио Мария Пацци, который незадолго до того обнаружил в Ватиканской библиотеке рукопись «Арифметики» Диофанта. Друзья договорились перевести её на латинский.
Одновременно с переводом Бомбелли пишет свой трактат «Алгебра» в трёх книгах, куда включил не только свои разработки, но и множество задач Диофанта с собственными комментариями. Он планировал дополнить трактат ещё двумя книгами геометрического содержания, но не успел их завершить.
Главный труд Бомбелли — «Алгебра» (L’Algebra), написана около 1560 года и издана в 1572 году. «Алгебра» примечательна во многих отношениях.
Бомбелли, первый в Европе, свободно оперирует с отрицательными числами, приводит правила работы с ними, включая правило знаков для умножения.
Он также первым оценил пользу комплексных чисел, в частности для решения уравнений третьей степени по формулам Кардано.
Пример[1]. Уравнение имеет вещественный корень x = 4, однако по формулам Кардано получаем: .
Бомбелли обнаружил, что , откуда сразу получается нужный вещественный корень. Он подчеркнул, что в подобных (неприводимых) случаях комплексные корни всегда сопряжены, поэтому и получается вещественный корень. Его разъяснения положили начало успешному применению в математике комплексных чисел.
Правда, полное исследование требовало умения извлекать корни из комплексных чисел, а этого умения у Бомбелли ещё не было. Полностью проблему решил де Муавр в XVIII веке.
Бомбелли также придумал первые скобки; они имели вид прямой и перевёрнутой буквы L. Привычные нам круглые скобки появились в том же XVI веке, однако в общее употребление их ввели только Лейбниц и Эйлер. Бомбелли первый стал использовать числовое (а не словесное, как ранее) обозначение для показателя степени, помечаемое специальной дужкой снизу. Современное обозначение показателя ввёл в широкое обращение Декарт.
Из других научных достижений Бомбелли следует отметить применение цепных дробей для вычисления квадратных корней из натуральных чисел. Чтобы найти значение , сначала определим его целое приближение: , где . Тогда . Отсюда несложно вывести, что . Повторно подставляя полученное выражение в формулу , мы получаем разложение в цепную дробь:
Для оценки точности полученных приближений можно использовать одно из свойств цепных дробей: последовательные значения подходящих дробей колеблются около предела, чередуя приближения с избытком и недостатком.
Пример. Для мы получаем последовательные приближения:
Последняя дробь равна …, в то время как .
Бомбелли занимался древними задачами удвоения куба и трисекции угла и сумел доказать, что их можно свести к решению кубического уравнения[2].
В честь Бомбелли названы:
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .