S-преобразова́ние — один из математических операционных методов отображения функции, зависящей от одной переменной, обычно от времени в частотно-временную область, разновидность оконного преобразования Фурье с гауссовской оконной функцией вида .
S-преобразование имеет лучшее разрешение, чем преобразование Габора, но уступает по разрешению преобразованию Вигнера и билинейному время-частотному преобразованию.
Предложено в 1994 г. для анализа геофизических данных[1][2].
В 2008 г.[3] найден алгоритм быстрого S-преобразования, на несколько порядков сокращающий вычислительную сложность относительно прямого вычисления. Алгоритм быстрого S-преобразования свободно доступен по свободной лицензии[4].
Математически S-преобразование определяется как оконное преобразование Фурье с гауссовой оконной функцией:
Обратное S-преобразование:
Эта статья или раздел нуждается в переработке. |
Операционные методы (операционные исчисления) нашли широкое распространение при исследовании динамических систем. Наибольшую известность и применение получили преобразования Лапласа, Фурье, Z-преобразование, дифференциальные преобразования Пухова. Характерной особенностью всех операционных методов является такое преобразование сигналов и переменных интегро-дифференциальной математической модели динамической системы, при котором формируется алгебраическая модель системы, производится решение задачи, и на основе которых путём обратного операционного преобразования определяются решения исходной математической модели. Развитие фрактальных динамических систем, математическими моделями которых являются интегро-дифференциальные уравнения нецелых порядков, привело к необходимости создания и применения новых операционных методов, которые были бы применимы как к классическим динамическим системам целого порядка, так и к фрактальным системам. Одним из таких методов является метод, получивший название S-преобразования. Метод основан на использовании полиномиальной аппроксимации в качестве операционного исчисления[5][6][7].
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .