WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Дробное интегро-дифференцирование в математическом анализе — объединённый оператор дифференцирования/интегрирования, порядок которого может быть произвольным вещественным или комплексным числом. Используется в дробном математическом анализе. Сам по себе оператор служит для обозначения операции взятия производной/интеграла дробного порядка.

Обычно оператор обозначается следующим образом:

Определения

Три наиболее употребительных формулы:

Самая простая и часто употребляемая формулировка. Эта формула является обобщением до произвольного порядка формулы повторного интегрирования Коши.
 
 
Формально похоже на интегро-дифференцирование Римана — Лиувилля, но распространяется на периодические функции с равным нулю интегралом по периоду.

Определения через преобразования

Обозначим непрерывное преобразование Фурье, как :

В Фурье-пространстве дифференцированию соответствует произведение:

Поэтому,

что сводится к

При преобразовании Лапласа, здесь обозначенном , дифференцирование заменяется умножением

Обобщая для произвольного порядка дифференцирования и решая уравнение относительно , получаем

Основные свойства

  • Линейность:
  • Правило нуля:
  • Дробное интегро-дифференцирование произведения:
  • Полугрупповое свойство:

в общем случае не выполняется[1].

Некоторые важные формулы

См. также

Ссылки

  • Тарасов В. Е. Модели теоретической физики с интегро-дифференцированием дробного порядка. — Москва, Ижевск: РХД, 2011. — 568 с.

Журналы

Примечания

  1. см. Свойство 2.4 (стр. 75) в книге Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations. — Elsevier, 2006.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии