WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема о биссектрисе — классическая теорема геометрии треугольника.

Формулировка

Биссектриса при вершине треугольника делит противоположную сторону на части, пропорциональные противолежащим сторонам. То есть, если биссектриса при вершине треугольника пересекает сторону в точке то

Замечания

  • То же равенство выполняется и для точки лежащей на пересечении внешней биссектрисы и продолжении стороны .

История

Теорема о биссектрисе формулируется в шестой книге «Начал Евклида» (предложение III)[1], в частности, на греческом языке в византийском манускрипте[2]. Ранняя цитата по Евклиду этой теоремы в русскоязычных источниках содержится в одном из первых русских учебников геометрии — рукописи начала XVII века «Синодальная №42» (книга 1, часть 2, глава 21).

Вариации и обобщения

  • Если D — произвольная точка на стороне BC треугольника ABC, тогда
    • В случае, когда AD — биссектриса, .
  • Биссекторная плоскость двугранного угла в тетраэдре (то есть плоскость, делящая двугранный угол пополам) делит противоположное его ребро на части, пропорциональные площадям граней тетраэдра, являющихся гранями этого двугранного угла[3]:200.

См. также

Примечания

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии