Градуированное частично упорядоченное множество (ЧУМ) — это частично упорядоченное множество P, снабжённое функцией ранга ρ из P в N, удовлетворяющей следующим двум свойствам:
Значение функции ранга элемента ЧУМ называется рангом элемента. Иногда градуированное ЧУМ называется ранжированным, но определение ранжированное может иметь несколько другое значение, см. статью «Ранжированное частично упорядоченное множество[en]». Уровнем ранга градуированного частично упорядоченного множества называется подмножество всех элементов ЧУМ, имеющим заданное значение ранга[1][2].
Градуированные частично упорядоченные множества играют важную роль в комбинаторике и могут быть представлены в виде диаграммы Хассе.
Несколько примеров градуированных ЧУМ (с функциями ранга):
Ограниченное частично упорядоченное множество[3] допускает градуирование тогда и только тогда, когда все максимальные цепочки в P имеют одну длину [4] — если установить ранг наименьшего элемента равным 0, то ранг определяется полностью. Это перекрывает много конечных случаев. См. рисунок примера, не допускающего градуирования. Неограниченные ЧУМ, однако, могут быть существенно сложнее.
Функция-кандидат ранга, совместимая с упорядочением, делает ЧУМ градуированным тогда и только тогда, когда для x < z, где z имеет ранг n+1, для всех элементов y ранга n должно выполняться x ≤ y < z. Это условие является достаточным, поскольку в случае, когда x подчинён z, единственная возможность — y = x, и условие является необходимым, поскольку в градуированном ЧУМ можно в качестве y взять любой элемент максимального ранга с x ≤ y < z, который всегда существует и подчинён z.
Часто получаем ЧУМ с естественным кандидатом для ранговой функции. Например, если его элементы являются подмножествами некоторого базового множества B, можно взять число элементов этих подмножеств. Тогда выше указанный критерий может оказаться более практичным, чем определение, поскольку в нём не упоминается подчинение. Например, если B само по себе является ЧУМ-ом и P состоит из конечных нижних множеств (подмножества, для которых для любого элемента подмножества все меньшие элементы принадлежат тому же множеству), тогда это условие автоматически удовлетворяется, поскольку для нижних множеств x ⊂ z всегда существует максимальный элемент множества z, который отсутствует в x и может быть удалён из z для получения y.
Градуированное ЧУМ (с положительными значениями функции ранга) не может имеет какого-либо элемента x, до которого существуют цепочки произвольной длины с максимальным элементом x, в противном случае оно имело бы элементы произвольно малого (в том числе и отрицательного) ранга. Например, множество целых чисел (с естественным порядком) не может быть градуированным ЧУМ. Не может быть градуированным ЧУМ любой интервал (более чем с одним элементом), рациональных или вещественных чисел. (В частности, градуированные ЧУМ являются вполне фундированными, что означает, что они удовлетворяют условию убывающей цепочки[en] — они не содержат какой-либо бесконечной убывающей цепи[en] [5]). С этого момента мы рассматриваем ЧУМы , в которых таких цепочек нет. Отсюда следует, что при x < y мы можем получить y из x за конечное число шагов, последовательно выбирая элемент, которому предыдущий элемент подчинён. Это также означает, что (для функций ранга, принимающих положительные целые значения) совместимость ρ с порядком следует из требования подчинённости. В качестве варианта определения градуированного ЧУМ Биркгоф[6] позволяет функции ранга иметь произвольные (а не только неотрицательные) целые значения. В этом варианте целые числа могут быть градуированы (с помощью тождественной функции) и совместимость функции ранга с порядком не является избыточным требованием.
Заметим, что градуированное ЧУМ не обязано удовлетворять условию возрастающей цепочки[en]. Например, натуральные числа содержат бесконечную возрастающую цепочку .
ЧУМ является градуированным тогда и только тогда, когда любая связная компонента его графа сравнимости является градуированной, так что дальнейшее описание предполагает, что этот граф сравнимости связен. На каждой связной компоненте функция ранга единственна с точностью до однородного сдвига (так что функцию ранга можно всегда выбрать так, что минимальный ранг связной компоненты имеет ранг 0).
Если P имеет наименьший элемент Ô, при градуировании это эквивалентно условию, что для любого элемента x все максимальные цепи в интервале [Ô,x] имеют одну и ту же длину. Это условие необходимо, поскольку любой шаг в максимальной цепи является отношением подчинения, которое изменяет ранг на 1. Условие является также достаточным, поскольку в случае его выполнения можно использовать упомянутую длину для определения ранга x (длина конечной цепи равно числу "шагов", так что ранг на единицу меньше числа элементов цепи), и когда y подчинён x, добавление x к максимальной цепи [Ô,y] даёт максимальную цепь в [Ô,x].
Если P имеет также наибольший элемент Î (так что это ограниченное ЧУМ), тогда предыдущее условие может быть упрощено до требования, что все максимальные цепи в P имеют одну и ту же (конечную) длину. Это условие достаточно, поскольку любая пара максимальных цепей в [Ô,x] могут быть расширены максимальной цепью в [x,Î], что даёт пару максимальных цепей в P.
Многие авторы в области комбинаторики определяют градуированное ЧУМ таким образом, что все минимальные элементы P должны иметь ранг 0, и более того, что существует максимальный ранг r, являющийся рангом любого максимального элемента. В этом случае градуирование означает, что все максимальные цепи имеют длину r, как сказано выше. В этом случае говорят, что P имеет ранг r.
Далее, в этом случае с уровнем ранга связываются ранговые числа, или числа Уитни . Эти числа определяются как = число элементов множества P, имеющих ранг i .
Числа Уитни связаны со множеством важных комбинаторных теорем. Классический пример — теорема Спернера[en], которую можно сформулировать следующим способом:
Это означает, что
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .