WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Фундированное множество — частично упорядоченное множество , у которого любое непустое подмножество имеет минимальный элемент. Под минимальным элементом в здесь понимается , такой, что для любого из следует [1]. В математике фундированное множество также известно как полная полурешётка.

(Некоторые авторы[какие?] дополнительно требуют, чтобы отношение R было связным.)

Эквивалентное определение при условии использования аксиомы выбора, состоит в том, что множество M с отношением R является фундированным тогда и только тогда, когда оно удовлетворяет условию обрыва убывающих цепей, то есть не существует бесконечной последовательности x0, x1, x2, … элементов из M такой, что xn+1 R xn для любого индекса n.

Примеры

Примеры фундированных множеств без полного порядка.

  • Множество целых чисел с частичным порядком a < b тогда и только тогда, когда a делит b и ab
  • Множество всех конечных строк на конечном алфавите, с частичным порядком s < t тогда и только тогда, когда s строго включается как подстрока в t

Принцип трансфинитной индукции

Пусть  — фундированное множество и . Тогда если для любого из включения следует , то совпадает с [2].

Нётерова индукция

Нётерова индукция — это обобщение трансфинитной индукции, которое заключается в следующем.

Пусть  — фундированное множество,  — некоторое утверждение об элементах множества , и пусть мы хотим показать, что верно для всех . Для этого достаточно показать, что если , и верно для всех таких , что , то также верно. Другими словами

Примечания

Литература

  • Ершов Ю.Л., Палютин Е.А. Математическая логика. М.: Наука, 1987. — 336 с.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии