WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В теории информации энтропия Реньи — обобщение энтропии Шеннона — является семейством функционалов, используемых в качестве меры количественного разнообразия, неопределённости или случайности некоторой системы. Названа в честь Альфреда Реньи. Другое название -энтропия.

Если некоторая система имеет дискретное множество доступных состояний , которому соответствует распределение вероятностей для (т. е. — вероятности пребывания системы в состояниях ), тогда энтропия Реньи с параметром (при и ) системы определяется как

,

где угловыми скобками обозначено математическое ожидание по распределению ( — вероятность пребывания системы в некотором состоянии как случайная величина), логарифм берётся по основанию 2 (для счёта в битах) либо по другому удобному основанию (оно должно быть больше 1). Основание логарифма определяет единицу измерения энтропии. Так, в математической статистике обычно используется натуральный логарифм.

Если все вероятности , тогда при любом энтропия Реньи . Иначе -энтропия убывает как функция . Притом более высокие значения (уходящие в бесконечность) дают энтропии Реньи значения, которые в большей степени определены лишь самыми высокими вероятностями событий (т. е. вклад в энтропию маловероятных состояний уменьшается). Промежуточный случай в пределе даёт энтропию Шеннона, которая обладает особыми свойствами. Более низкие значения (стремящиеся к нулю), дают значение энтропии Реньи, которое взвешивает возможные события более равномерно, менее зависимо от их вероятностей. А при получаем максимально возможную -энтропию, равную независимо от распределения (лишь бы ).

Смысл параметра можно описать, говоря неформальным языком, как восприимчивость функционала к отклонению состояния системы от равновесного: чем больше , тем быстрее уменьшается энтропия при отклонении системы от равновесного состояния. Смысл ограничения заключается в том, чтобы обеспечивалось увеличение энтропии при приближении системы к равновесному (более вероятному) состоянию. Это требование является естественным для понятия энтропия. Следует заметить, что для энтропии Цаллиса, которая эквивалентна энтропии Реньи с точностью до не зависящего от монотонного преобразования, соответствующее ограничение часто опускают, при этом для отрицательных значений параметра вместо максимизации энтропии используют её минимизацию.

Энтропия Реньи играет важную роль в экологии и статистике, определяя т. н. индексы разнообразия. Энтропия Реньи также важна в квантовой информации, она может быть использована в качестве меры сложности. В цепочке Гейзенберга энтропия Реньи была рассчитана в терминах модулярных функций, зависящих от . Они также приводят к спектру показателей фрактальной размерности.

Hα для некоторых конкретных значений α

Некоторые частные случаи

  • При энтропия Реньи не зависит от вероятностей состояний (вырожденный случай) и равна логарифму числа состояний (логарифму мощности множества ):
.

Данную энтропию иногда называют энтропией Хартли. Она используется, например, в формулировке принципа Больцмана.

  • В пределе при , можно показать, используя правило Лопиталя, что сходится к энтропии Шеннона. Таким образом, семейство энтропий Реньи может быть доопределено функционалом
.
  • Квадратичная энтропия, иногда называемая энтропией столкновений, — это энтропия Реньи с параметром :
,

где и — независимые случайные величины, одинаково распределённые на множестве с вероятностями ( ). Квадратичная энтропия используется в физике, обработке сигналов, экономике.

  • Существует предел
,

который называется min-энтропией, потому что это наименьшее значение . Данная энтропия также является вырожденным случаем, поскольку её значение определяется только наиболее вероятным состоянием.

Неравенства для различных значений α

Два последних случая связаны соотношением . С другой стороны, энтропия Шеннона может быть сколь угодно высокой для распределения X с фиксированной min-энтропией.

потому что .
, потому что .
в соответствии с неравенством Йенсена .

Расхождения (дивергенции) Реньи

Как и абсолютные энтропии Реньи, Реньи определил спектр мер расхождений (дивергенций), обобщающих расхождение Кульбака—Лейблера. Формулы данного раздела записаны в общем виде — через логарифм по произвольному основанию. Поэтому нужно понимать, что каждая приведённая формула представляет собой семейство эквивалентных функционалов, определённых с точностью до постоянного (положительного) множителя.

Расхождение Реньи с параметром , где и , распределения относительно распределения (или «расстояние от до ») определяется как

или (формально, без учёта нормировки вероятностей)

,
.

Как расхождение Кульбака—Лейблера, расхождение Реньи является неотрицательным для . Это расхождение также известно как альфа-расхождение ( -дивергенция).

Некоторые частные случаи

  • При дивергенция Реньи не определена, однако семейство дивергенций можно доопределить элементом
 : минус логарифм от суммы вероятностей , таких что соответствующие .
  •  : расхождение Кульбака—Лейблера (равно математическому ожиданию по распределению логарифма отношения вероятностей ).
  •  : логарифм от математического ожидания по распределению отношения вероятностей . Данное расхождение с точностью до монотонного преобразования эквивалентно расстоянию хи-квадрат .
  •  : логарифм от максимального отношения вероятностей .

Почему случай особенный[уточнить]

Значение , которое соответствует энтропии Шеннона и расхождению Кульбака—Лейблера, является особенным, потому что только в этом случае можно выделить переменные A и X из совместного распределения вероятностей, такие что справедливо

для энтропии, и

для дивергенции.

Последнее означает, что если мы будем искать распределение , которое сводит к минимуму расхождения некоторых основополагающих мер , и получим новую информацию, которая влияет только на распределение , то распределение не будет зависеть от изменений .

В общем случае расхождения Реньи с произвольными значениями удовлетворяют условиям неотрицательности, непрерывности и инвариантности относительно преобразования координат случайных величин. Важным свойством любых энтропии и дивергенции Реньи является аддитивность: когда и независимы, из следует

и

.

Наиболее сильные свойства случая , которые предполагают определение условной информации и взаимной информации из теории связи, могут быть очень важны в других приложениях или совершенно неважны, в зависимости от требований этих приложений.

Перекрёстная энтропия Реньи

Перекрёстная энтропия от двух распределений с вероятностями и ( ) в общем случае может определяться по-разному (в зависимости от применения), но должна удовлетворять условию . Один из вариантов определения (аналогичным свойством обладает перекрёстная энтропия Шеннона):

.

Другое определение, предложенное А. Реньи, может быть получено из следующих соображений. Определим эффективное количество состояний системы как среднее геометрическое взвешенное от величин с весами :

.

Отсюда следует выражение для перекрёстной энтропии Шеннона

.

Рассуждая аналогичным образом, определим эффективное количество состояний системы как среднее степенное взвешенное от величин с весами и параметром :

.

Таким образом, перекрёстная энтропия Реньи имеет вид

.
  • Нетрудно видеть, что в случае, если распределения вероятностей и совпадают, перекрёстная энтропия Реньи совпадает с энтропией Реньи.
  • Также при перекрёстная энтропия Реньи сходится к перекрёстной энтропии Шеннона.
  • Свойство , справедливое для перекрёстной энтропии Шеннона, в общем случае не имеет места. Перекрёстная энтропия Реньи может быть как больше, так и меньше энтропии Реньи.

Непрерывный случай

Для формального обобщения энтропии Шеннона на случай непрерывного распределения служит понятие дифференциальная энтропия. Совершенно аналогично определяется дифференциальная энтропия Реньи:

.

Расхождение (дивергенция) Реньи в непрерывном случае также является обобщением расхождения Кульбака—Лейблера и имеет вид

.

Определение перекрёстной энтропии, предложенное А. Реньи, в непрерывном случае имеет вид

.

В приведённых формулах и — некоторые функции плотности распределения вероятностей, определённые на интервале , и полагается , .

Литература

  • A. Rényi (1961). "On measures of information and entropy". Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability 1960: 547–561. 
  • A. O. Hero, O.Michael and J. Gorman (2002). “Alpha-divergences for Classification, Indexing and Retrieval” (PDF).
  • F. Nielsen and S. Boltz (2010). “The Burbea-Rao and Bhattacharyya centroids”.
  • O.A. Rosso EEG analysis using wavelet-based information tools. Journal of Neuroscience Methods 153 (2006) 163–182
  • Rényi entropy as a measure of entanglement in quantum spin chain: F. Franchini, A. R. Its, V. E. Korepin, Journal of Physics A: Math. Theor. 41 (2008) 025302

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии