WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В теории информации перекрёстная энтропия между двумя распределениями вероятностей измеряет среднее число бит, необходимых для опознания события из набора возможностей, если используемая схема кодирования базируется на заданном распределении вероятностей , вместо «истинного» распределения .

Перекрестная энтропия для двух распределений и над одним и тем же вероятностным пространством определяется следующим образом:

,

где энтропия , и расстояние Кульбака—Лейблера от до (также известная как относительная энтропия).

Для дискретного и это означает

Ситуация для непрерывного распределения аналогична:

Нужно учесть, что, несмотря на формальную аналогию функционалов для непрерывного и дискретного случаев, они обладают разными свойствами и имеют разный смысл. Непрерывный случай имеет ту же специфику, что и понятие дифференциальной энтропии.

NB: Запись иногда используется как для перекрёстной энтропии, так и для совместной энтропии и .

Минимизация перекрёстной энтропии

Минимизация перекрёстной энтропии часто используется в оптимизации и для оценки вероятностей редких событий.


См. также

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии