WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Элемента́рный электри́ческий заря́д — фундаментальная физическая постоянная, минимальная порция (квант) электрического заряда, наблюдающегося в природе у свободных долгоживущих частиц. Равен приблизительно 1,602 176 6208(98)⋅10−19 Кл[1] в Международной системе единиц (СИ) (4,803 204 673(29)⋅10−10 Фр в системе СГСЭ[2]). Тесно связан с постоянной тонкой структуры, описывающей электромагнитное взаимодействие[3].

Квантование электрического заряда

Любой наблюдаемый в эксперименте электрический заряд всегда кратен одному элементарному — такое предположение было высказано Б. Франклином в 1752 году и в дальнейшем неоднократно проверялось экспериментально. Впервые элементарный заряд был экспериментально измерен Милликеном в 1910 году[3].

Тот факт, что электрический заряд встречается в природе лишь в виде целого числа элементарных зарядов, можно назвать квантованием электрического заряда. При этом в классической электродинамике вопрос о причинах квантования заряда не обсуждается, поскольку заряд является внешним параметром, а не динамической переменной. Удовлетворительного объяснения, почему заряд обязан квантоваться, пока не найдено, однако уже получен ряд интересных наблюдений.

  • Если в природе существует магнитный монополь, то, согласно квантовой механике, его магнитный заряд обязан находиться в определённом соотношении с электрическим зарядом любой выбранной элементарной частицы. Отсюда автоматически следует, что существование всего одного магнитного монополя влечёт за собой квантование всех электрических зарядов во Вселенной. Однако обнаружить в природе магнитный монополь не удалось.
  • В современной физике элементарных частиц разрабатываются модели наподобие преонной, в которых все известные фундаментальные частицы оказывались бы простыми комбинациями новых, ещё более фундаментальных частиц. В этом случае квантование заряда наблюдаемых частиц не представляется удивительным, поскольку оно возникает «по построению».
  • Не исключено также, что все параметры наблюдающихся частиц будут описаны в рамках единой теории поля, подходы к которой разрабатываются в настоящее время. В таких теориях величина электрического заряда частиц должна вычисляться из крайне небольшого числа фундаментальных параметров, возможно, связанных со структурой пространства-времени на сверхмалых расстояниях. Если такая теория будет построена, тогда то, что мы наблюдаем как элементарный электрический заряд, окажется некоторым дискретным инвариантом пространства-времени (скажем, топологическим). Такой подход развивается, например, в модели С. Бильсона-Томпсона[4], в которой фермионы Стандартной модели интерпретируются, как три ленты пространства-времени, заплетённые в косу (брэд), а электрический заряд (точнее, треть от него) соответствует перекрученной на 180° ленте. Однако несмотря на изящество таких моделей, конкретных общепринятых результатов в этом направлении пока не получено.

Дробный электрический заряд

С открытием кварков стало понятно, что элементарные частицы могут обладать дробным электрическим зарядом, например, 13 и 23 элементарного. Однако подобные частицы существуют только в связанных состояниях (конфайнмент), таким образом, почти все известные свободные частицы (и все стабильные и долгоживущие) имеют электрический заряд, кратный элементарному, хотя рассеяние на частицах с дробным зарядом наблюдалось.

Исключением является t-кварк, его время жизни (~1⋅10−25) настолько мало́, что он распадается раньше, чем успевает подвергнуться адронизации, и поэтому встречается только в свободном виде. Заряд t-кварка по прямым измерениям равен +23e[5].

Неоднократные поиски долгоживущих свободных объектов с дробным электрическим зарядом, проводимые различными методиками в течение длительного времени, не дали результата.

Стоит, однако, отметить, что электрический заряд квазичастиц также может быть не кратен целому. В частности, именно квазичастицы с дробным электрическим зарядом отвечают за дробный квантовый эффект Холла.

Экспериментальное определение элементарного электрического заряда

Число Авогадро и постоянная Фарадея

Если известны число Авогадро NA и постоянная Фарадея F, величину элементарного электрического заряда можно вычислить, используя формулу

(другими словами, заряд одного моля электронов, делённый на число электронов в моле, равен заряду одного электрона.)

По сравнению с другими, более точными методами, этот метод не даёт высокой точности, но всё-таки точность его достаточно высока. Ниже приводятся подробности этого метода.

Значение постоянной Авогадро NA было впервые приблизительно измерено Иоганном Йозефом Лошмидтом, который в 1865 году определил на газокинетической основе размер молекул воздуха, что эквивалентно расчету числа частиц в заданном объёме газа[6]. Сегодня значение NA может быть определено с очень высокой точностью с использованием очень чистых кристаллов (как правило — кристаллов кремния) путём измерения расстояния между атомами с использованием дифракции рентгеновских лучей; или другим способом, с точным измерением плотности кристалла. Отсюда можно найти массу (m) одного атома, а так как молярная масса (M) известна, число атомов в моле может быть рассчитано так: NA = M/m.

Величина F может быть измерена непосредственно с помощью законов электролиза Фарадея. Законы электролиза Фарадея определяют количественные соотношения, основанные на электрохимических исследованиях, опубликованных Майклом Фарадеем в 1834 году[7]. В эксперименте электролиза существует взаимно-однозначное соответствие между количеством электронов проходящих между анодом и катодом, и количеством ионов, осевших на пластине электрода. Измеряя изменения массы анода и катода, а также общий заряд, проходящий через электролит (который может быть измерен как интеграл по времени от электрического тока), а также учитывая молярную массу ионов, можно вывести F.

Ограничения на точность метода заключается в измерении F. Лучшие экспериментальное значения имеют относительную погрешность 1,6 промилле, что примерно в тридцать раз больше, чем в других современных методах измерения и расчета элементарного заряда.

Опыт Милликена

Известный опыт по измерению заряда электрона e. Маленькая капля масла в электрическом поле будет двигаться с такой скоростью, что будут скомпенсированы сила тяжести, сила Стокса (производная от вязкости воздуха) и электрическая сила. Сила тяжести и Стокса могут быть рассчитаны исходя из размера и скорости падения капли в отсутствие электрического поля, откуда может быть определена и электрическая сила, действующая на каплю. Поскольку электрическая сила, в свою очередь, пропорциональна произведению электрического заряда и известной, заданной в эксперименте, напряжённости электрического поля, электрический заряд капли масла может быть точно вычислен. В этих опытах измеренные заряды различных капель масла оказались всегда целыми кратными одной небольшой величины, а именно e.

Дробовой шум

Любой электрический ток сопровождается электронным шумом от различных источников, одним из которых является дробовой шум. Существование дробового шума связано с тем, что ток является не непрерывным, а состоит из дискретных электронов, которые поочерёдно поступают на электрод. Путём тщательного анализа шума тока может быть вычислен заряд электрона. Этот метод, впервые предложенный Вальтером Шоттки, может давать значение е с точностью до нескольких процентов[8]. Тем не менее, он был использован в первом прямом наблюдении Лафлином квазичастиц, причастных к дробному квантовому эффекту Холла[9].

Эффект Джозефсона и константа фон Клитцинга

Другим точным методом измерения элементарного заряда является вычисление его из наблюдения двух эффектов квантовой механики: эффекта Джозефсона, при котором возникают колебания напряжения в определенной сверхпроводящей структуре и квантового эффекта Холла, эффекта квантования холловского сопротивления или проводимости двумерного электронного газа в сильных магнитных полях и при низких температурах. Постоянная Джозефсона

где hпостоянная Планка, может быть измерена непосредственно с помощью эффекта Джозефсона.

Постоянная фон Клитцинга

может быть измерена непосредственно с помощью квантового эффекта Холла.

Из этих двух констант может быть вычислена величина элементарного заряда:

См. также

Примечания

  1. Elementary charge (англ.). The NIST Reference on Constants, Units, and Uncertainty. US National Institute of Standards and Technology. Проверено 20 мая 2016.
  2. Значение в единицах СГСЭ приведено как результат пересчёта значения CODATA в кулонах с учётом того факта, что кулон точно равен 2 997 924 580 единицам электрического заряда СГСЭ (франклинам или статкулонам).
  3. 1 2 Томилин К. А. Фундаментальные физические постоянные в историческом и методологическом аспектах. М.: Физматлит, 2006. — С. 96—105. — 368 с. 400 экз. ISBN 5-9221-0728-3.
  4. A topological model of composite preons (недоступная ссылка) es.arXiv.org
  5. V.M. Abazov et al. (DØ Collaboration) (2007). “Experimental discrimination between charge 2e/3 top quark and charge 4e/3 exotic quark production scenarios”. Physical Review Letters. 98 (4): 041801. arXiv:hep-ex/0608044. Bibcode:2007PhRvL..98d1801A. DOI:10.1103/PhysRevLett.98.041801. PMID 17358756.
  6. Loschmidt, J. (1865). “Zur Grösse der Luftmoleküle”. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften Wien. 52 (2): 395—413. English translation Архивировано 7 февраля 2006 года..
  7. Ehl, Rosemary Gene; Ihde, Aaron (1954). “Faraday's Electrochemical Laws and the Determination of Equivalent Weights”. Journal of Chemical Education. 31 (May): 226—232. Bibcode:1954JChEd..31..226E. DOI:10.1021/ed031p226. Используется устаревший параметр |coauthors= (справка)
  8. Beenakker, Carlo & Schönenberger, Christian, "Quantum Shot Noise. Fluctuations in the flow of electrons signal the transition from particle to wave behavior", arΧiv:cond-mat/0605025 .
  9. de-Picciotto, R.; Reznikov, M.; Heiblum, M.; Umansky, V.; Bunin, G.; Mahalu, D. (1997). “Direct observation of a fractional charge”. Nature. 389 (162—164): 162. Bibcode:1997Natur.389..162D. DOI:10.1038/38241..

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии