WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Четырёхмерная топология — раздел топологии, который исследует топологические и гладкие четырёхмерные многообразия.

4-мерные многообразия появляются в общей теории относительности как пространство-время.

Особые свойства

В размерности 4 теория топологических и гладких многообразий сильно отличается от низших и высших размерностей.

  • Во всех размерностях, кроме 4, обнуление класса Кёрби — Зибенманна даёт необходимое и достаточное условие для существования кусочно-линейной структуры.
  • Во всех размерностях, кроме 4, компактное топологическое многообразие имеет лишь конечное число различных кусочно-линейных и гладких структур. В размерности 4 их число может быть счётным.
  • Во всех размерностях, кроме 4, евклидово пространство не имеет экзотических гладких структур. В размерности 4 их несчётное число.
  • Решение гладкой гипотезы Пуанкаре известно во всех размерностях, кроме 4 (как правило, она неверна в размерностях, начиная с 7).
    • Гипотеза Пуанкаре для кусочно-линейных многообразий также решена для всех размерностей, кроме 4.
  • Гладкая теорема об h-кобордизмe верна при условии, что ни многообразие, ни его граница не имеют размерность 4. Она неверна, если граница имеет размерность 4 (как показано Дональдсоном), и неизвестно, верна ли она, если размерность самого кобордизма равна 4.
  • Трюк Уитни не работает в размерности 4.

Классификация

Топологическая

Гомотопический тип односвязного компактного 4-мерного многообразия зависит только от его формы пересечений.

  • По теореме Фридмана, многообразия такого типа классифицируются с точностью до гомеоморфизма формой пересечения и Z/2Z-инвариантом, так называемым классом Кёрби — Зибенманна.
    • Более того, может возникнуть любая комбинация унимодулярной формы и класса Кёрби — Зибенманна, за исключением случая, когда форма чётна — в этом случае класс Кёрби — Зибенманна должен быть равен , где обозначает сигнатуру формы пересечений.

Примеры:

  • В частном случае, когда форма равна 0, теорема даёт 4-мерный случай топологической гипотезы Пуанкаре.
  • Если форма равна E8, получается так называемое E8-многообразие. Это многообразие не допускает триангуляции.
  • Для формы Z, есть два многообразия в зависимости от класса Кёрби — Зибенманна: 2-мерное комплексное проективное пространство и фальшивое проективное пространство (того же гомотопического типа, но не гомеоморфное ему).
  • Когда ранг больше 28, число положительно определённых унимодулярных форм начинает расти чрезвычайно быстро. Поэтому появляется огромное количество соответствующих односвязных топологических 4-многообразий.

Классификация Фридмана может быть продолжена в некоторых случаях, когда фундаментальная группа не слишком сложна. Например, если она изоморфна Z, то существует классификация с использованием эрмитовых форм над групповым кольцом группы Z. В случае слишком больших фундаментальных групп (например, свободной группы с 2 образующими) метод Фридмана не применим, и очень мало известно о таких многообразиях.

Для любой конечно заданной группы существует гладкое компактное 4-мерное многообразие, фундаментальная группа которого изоморфна этой группе. Поскольку не существует алгоритма, позволяющего определить, являются ли два задания группы изоморфными, не существует и алгоритма, чтобы определить, когда два многообразия имеют изоморфные фундаментальные группы. Это одна из причин, почему значительная часть работ о 4-мерных многообразиях рассматривают односвязной случай: известно, что в общем случае многие задачи неразрешимы.

Гладкая

Для многообразия размерности не более чем 6, любая кусочно-линейная структура может быть сглажена единственным образом.[1] В частности, классификация 4-мерных кусочно-линейных многообразий не отличается от теории 4-мерных гладких многообразий.

Поскольку топологическая классификация известна, классификация односвязных компактных гладких 4-многообразий сводится к двум вопросам:

  1. Какие топологические многообразия являются сглаживаемыми?
  2. Как расклассифицировать гладкие структуры на сглаживаемых многообразиях?

На первый вопрос имеется почти полный ответ. Во-первых, класс Кёрби — Зибенманна должен обнулиться, и во-вторых:

  • Если форма пересечений знакоопределённая, то теорема Дональдсона дает полный ответ: гладкая структура существует тогда и только тогда, когда форма диагонализуема.
  • Если форма не знакоопределённая и нечётная, то гладкая структура существует.
  • Если форма не знакоопределённая и чётная, мы можем предположить, что она имеет неположительную сигнатуру (иначе изменим ориентацию). В этом случае ответ зависит от размерности формы и её сигнатуры .
    • Если , то гладкая структура существует; она задается путём взятия связной суммы нескольких копий поверхностей типа К3 (англ.) и S2×S2.
    • Если , то по теореме Фурута гладкой структуры не существует.
    • В оставшемся зазоре, между 10/8 и 11/8, ответ по большей части неизвестен. Так называемая «11/8 гипотеза» гласит, что гладкой структуры не существует, если размерность/|сигнатура| меньше 11/8.

На сегодня не известно ни одного сглаживаемого многообразия, для которого ответ на второй вопрос был бы известен. В настоящее время не существует ни одной правдоподобной гипотезы о том, как данная классификация может выглядеть.

Дональдсон показал, что на некоторых односвязных компактных 4-мерных многообразиях, таких как поверхности Долгачёва, есть счётно-бесконечное число различных гладких структур.

Есть несчётное количество различных гладких структур на R4.

Примечания

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии