Формулы Деламбра в сферической тригонометрии выражают соотношение между всеми шестью элементами сферического треугольника — тремя сторонами и тремя углами.
Формулы Деламбра имеют следующий вид[1]:
Эти формулы можно непосредственно применять для решения косоугольных сферических треугольников по двум сторонам и углу между ними и по двум углам и прилежащей к ним стороне (в обоих случаях имеем систему четырёх уравнений с тремя переменными). Однако на практике для этого чаще используются легко выводимые из формул Деламбра формулы аналогии Непера.
Подобные соотношения известны в планиметрии как формулы Мольвейде.
Формулы Деламбра были приведены Ж.Б.Ж.Деламбром в астрономическом ежегоднике Connaissance des Temps на 1809 год, изданном в 1807 году[2]. Они также были упомянуты К.Ф.Гауссом в его сочинении «Теория движения небесных тел», изданном в 1809 году[3], поэтому иногда называются формулами Гаусса[4].
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .