WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Лежандра в сферической тригонометрии позволяет упростить решение сферического треугольника, если известно, что его стороны достаточно малы по сравнению с радиусом сферы, на которой он расположен.

Формулировка

Сферический треугольник.

Пусть дан сферический треугольник со сторонами , малыми по сравнению с радиусом сферы , углами и эксцессом . Построим на плоскости треугольник со сторонами , равными по длине соответствующим сторонам данного сферического треугольника, то есть, поскольку для сторон сферического треугольника принята угловая мера, и они выражаются в радианах, то . Обозначим углы такого треугольника (выраженные в радианах) через . Теорема Лежандра утверждает, что справедливы соотношения[1]:

Таким образом, если стороны сферического треугольника малы по сравнению с радиусом сферы, мы можем заменить его на плоский треугольник с такими же по длине сторонами и на треть эксцесса меньшими углами и вычислять элементы плоского треугольника.

История

Эта теорема была сформулирована А.М.Лежандром в 1787 году[2] и доказана им в 1798 году[3]. Однако, по некоторым источникам, она была известна ещё в 1740 году, когда Ш.М. де ла Кондамин использовал её при обработке градусных измерений перуанской экспедиции[4].

Примечания

  1. Степанов Н. Н. §55. Теорема Лежандра // Сферическая тригонометрия. — М.—Л.: ОГИЗ, 1948. — С. 141-143. — 154 с.
  2. Legendre A.M.: Mémoire sur les opérations trigonométriques, dont les résultats dépendent de la figure de la Terre. Histoire de l’Académie royale de sciences, Paris 1787; 352-383.
  3. Legendre A.M.: Méthode pour déterminer la longueur exacte du quart du méridien d’après les observations faites pour la mesure de l’arc compris entre Dunkerque et Barcelone, Note III: Résolution des triangles sphériques dont des côtés sont très petits par rapport au rayon de la sphère. J.B. Delembre: Méthodes analytiques pour la détermination d’un arc du méridien, Paris 1798; 12-14
  4. Zbyněk Nádeník. Legendre theorem on spherical triangles. Архивировано 16 января 2014 года.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии