Унита́рная ма́трица — квадратная матрица с комплексными элементами, результат умножения которой на эрмитово сопряжённую равен единичной матрице: . Другими словами, матрица унитарна тогда и только тогда, когда существует обратная к ней матрица, удовлетворяющая условию .
Унитарная матрица, элементы которой вещественны, является ортогональной.
Следующие утверждения относительно данной квадратной матрицы являются эквивалентными:
Унитарная матрица представляет преобразование, переводящее ортонормированный базис комплексного векторного пространства размерности, соответствующей её размеру, в ортонормированный базис. (Это верно для любого ортонормированного базиса).
Это эквивалентно утверждению, что преобразование, представляемое унитарной матрицей, сохраняет скалярное произведение.
Если определитель унитарной матрицы равен единице, её называют специальной унитарной матрицей. Модуль определителя унитарной матрицы всегда равен 1.
Множество всех специальных унитарных матриц порядка по умножению образуют специальную унитарную группу . Группы и играют важную роль при изложении квантовой механики и физики элементарных частиц.
![]() |
Это заготовка статьи по алгебре. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .