WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теория кристаллического поля — квантовохимическая модель, в которой электронная конфигурация соединений переходных металлов описывается как состояние иона либо атома, находящегося в электростатическом поле, создаваемым окружающими его ионами, атомами или молекулами. Концепция кристаллического поля была предложена Беккерелем для описания состояния атомов в кристаллах и затем развита Хансом Бете и Джоном Ван Флеком для описания низших состояний катионов переходных металлов, окруженных лигандами — как анионами, так и нейтральными молекулами. Теория кристаллического поля была в дальнейшем объединена [и усовершенствована] с теорией (делокализованных) молекулярных орбиталей в более общую теорию поля лигандов, учитывающую частичную ковалентность связи металл-лиганд в координационных соединениях[1].

Теория кристаллического поля позволяет предсказать или интерпретировать оптические спектры поглощения и спектры электронного парамагнитного резонанса кристаллов и комплексных соединений, а также энтальпий гидратации и устойчивости в растворах комплексов переходных металлов.

Обзор теории кристаллического поля

Согласно ТКП, взаимодействие между переходным металлом и лигандами возникает вследствие притяжения между положительно заряженным катионом металла и отрицательным зарядом электронов на несвязывающих орбиталях лиганда. Теория рассматривает изменение энергии пяти вырожденных d-орбиталей в окружении точечных зарядов лигандов. По мере приближения лиганда к иону металла, электроны лиганда становятся ближе к некоторым d-орбиталям, чем к другим, вызывая потерю вырожденности. Электроны d-орбиталей и лигандов отталкиваются друг от друга как заряды с одинаковым знаком. Таким образом, энергия тех d-электронов, которые ближе к лигандам, становится выше, чем тех, которые дальше, что приводит к расщеплению уровней энергии d-орбиталей.

На расщепление влияют следующие факторы:

  • Природа иона металла.
  • Степень окисления металла. Чем выше степень окисления, тем выше энергия расщепления.
  • Расположение лигандов вокруг иона металла.
  • Природа лигандов, окружающих ион металла. Чем сильнее эффект от лигандов, тем больше разность между высоким и низким уровнем энергии.

Самый распространённый вид координации лигандов — октаэдрическая, при которой шесть лигандов создают кристаллическое поле октаэдрической симметрии вокруг иона металла. При октаэдрическом окружении иона металла с одним электроном на внешней оболочке d-орбитали разделяются на две группы с разностью энергетических уровней Δокт (энергия расщепления), при этом энергия у орбиталей dxy, dxz и dyz будет ниже, чем у dz2 и dx2-y2, так как орбитали первой группы находятся дальше от лигандов и испытывают меньшее отталкивание. Три орбитали с низкой энергией обозначаются как t2g, а две с высокой — как eg.

Следующими по распространённости являются тетраэдрические комплексы, в которых четыре лиганда образуют тетраэдр вокруг иона металла. В этом случае d-орбитали также разделяются на две группы с разностью энергетических уровней Δтетр. В отличие от октаэдрической координации, низкой энергией будут обладать орбитали dz2 и dx2-y2, а высокой — dxy, dxz и dyz. Кроме того, так как электроны лигандов не находятся непосредственно в направлении d-орбиталей, энергия расщепления будет ниже, чем при октаэдрической координации. С помощью ТКП также можно описать плоскоквадратную и другие геометрии комплексов.

Разность энергетических уровней Δ между двумя или более группами орбиталей зависит также от природы лигандов. Некоторые лиганды вызывают меньшее расщепление, чем другие, причины чего объясняет теория поля лигандов. Спектрохимический ряд — полученный опытным путём список лигандов, упорядоченных в порядке возрастания Δ:[2]

I < Br < S2− < SCN < Cl < NO3 < N3 < F < OH < C2O42− < H2O < NCS < CH3CN < py < NH3 < en < bipy < phen < NO2 < PPh3 < CN < CO

Степень окисления металла также влияет на Δ. Металл с более высокой степенью окисления ближе притягивает лиганды за счёт большей разности зарядов. Лиганды, находящиеся ближе к иону металла, вызывают большее расщепление.

Низко- и высокоспиновые комплексы

Распределение d-электронов низкоспинового комплекса [Fe(NO2)6]3−

Лиганды, вызывающие большое расщепление d-уровней, например CN и CO, называются лигандами сильного поля. В комплексах с такими лигандами электронам невыгодно занимать орбитали с высокой энергией. Следовательно, орбитали с низкой энергией полностью заполняются до того, как начинается заполнение орбиталей с высокой энергией. Такие комплексы называются низкоспиновыми. Например, NO2 — лиганд сильного поля, создающий большое расщепление. Все 5 d-электронов октаэдрического иона [Fe(NO2)6]3− будут располагаться на нижнем уровне t2g.

Распределение d-электронов высокоспинового комплекса [FeBr6]3−

Напротив, лиганды, вызывающие малое расщепление, например I и Br, называются лигандами слабого поля. В этом случае легче поместить электроны в орбитали с высокой энергией, чем расположить два электрона в одной орбитали с низкой энергией, потому что два электрона в одной орбитали отталкивают друг друга, и затраты энергии на размещение второго электрона в орбитали выше, чем Δ. Таким образом, прежде чем появятся парные электроны, в каждую из пяти d-орбиталей должно быть помещёно по одному электрону в соответствии с правилом Хунда. Такие комплексы называются высокоспиновыми. Например, Br — лиганд слабого поля, вызывающий малое расщепление. Все 5 d-орбиталей иона [FeBr6]3−, у которого тоже 5 d-электронов, будут заняты одним электроном.

Энергия расщепления для тетраэдрических комплексов Δтетр примерно равна 4/9Δокт (для одинаковых металла и лигандов). В результате этого разность энергетических уровней d-орбиталей обычно ниже энергии спаривания электронов, и тетраэдрические комплексы обычно высокоспиновые.

Диаграммы распределения d-электронов позволяют предсказать магнитные свойства координационных соединений. Комплексы с непарными электронами являются парамагнитными и притягиваются магнитным полем, а без — диамагнитными и слабо отталкиваются.

Энергия стабилизации кристаллическим полем

Энергия стабилизации кристаллическим полем (ЭСКП) — энергия электронной конфигурации иона переходного металла относительно средней энергии орбиталей. Стабилизация возникает вследствие того, что в поле лигандов энергетический уровень некоторых орбиталей ниже, чем в гипотетическом сферическом поле, в котором на все пять d-орбиталей действует одинаковая сила отталкивания, и все d-орбитали вырождены. Например, в октаэдрическом случае уровень t2g ниже, чем средний уровень в сферическом поле. Следовательно, если в данных орбиталях находятся электроны, то ион металла более стабилен в поле лигандов относительно сферического поля. Наоборот, энергетический уровень орбиталей eg выше среднего, и электроны, находящиеся в них, уменьшают стабилизацию.

Энергия стабилизации октаэдрическим полем

В октаэдрическом поле три орбитали t2g стабилизированы относительно среднего энергетического уровня на 2/5 Δокт, а две орбитали eg дестабилизированы на 3/5 Δокт. Выше были приведены примеры двух электронных конфигураций d5. В первом примере — низкоспиновый комплекс [Fe(NO2)6]3− с пятью электронами в t2g. Его ЭСКП составляет 5 × 2/5 Δокт = 2Δокт. Во втором примере — высокоспиновый комплекс [FeBr6]3− с ЭСКП (3 × 2/5 Δокт) − (2 × 3/5 Δокт) = 0. В этом случае стабилизирующий эффект электронов в низкоуровневых орбиталях нейтрализуется дестабилизирующим эффектом электронов в высокоуровневых орбиталях.

Диаграммы расщепления d-уровня кристаллическим полем

октаэдрическаяпентагонально-бипирамидальнаяквадратно-антипризматическая
плоскоквадратнаяквадратно-пирамидальнаятетраэдрическая
тригонально-бипирамидальная

Примечания

  1. crystal field // IUPAC Gold Book
  2. Д. Шрайвер, П. Эткинс. Теория кристаллического поля // Неорганическая химия = Inorganic Chemistry. М.: Мир, 2004. — Т. 1. — С. 359. — 679 с. ISBN 5-03-003628-8.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии