WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Гёделя о компактности утверждает, что набор из предложений в логике первого порядка имеет модель, тогда и только тогда, когда каждое конечное подмножество предложений имеет модель.

Эта теорема является важным инструментом в теории моделей, так как она обеспечивает удобный метод для построения моделей для бесконечного набора предложений.

Теорема является следствием теоремы Тихонова о том, что произведение компактных пространств компактно. Кроме того, она является аналогом характеризации компактных пространств через свойство конечных пересечений.

История

Курт Гедель доказал теорему счётной компактности в 1930 году. Анатолий Иванович Мальцев доказал бесчисленных случае в 1936 году.

Следствия

  • Если, предложение выполнено в каждом поле характеристики нуль, то оно верно во всех полях достаточно большой характеристики.
    • Действительно, пусть φ выполнено в каждом поле характеристики нуль. Тогда его отрицание ¬φ, вместе с аксиомами поля и бесконечной последовательности предложений 1+1 0, 1+1+1 0, ..., приводят к противоречию (поскольку отсутствует поля характеристики 0, в котором φ не имеет места — бесконечная последовательность предложений гарантирует, что любая модель будет полем характеристики 0). Следовательно, существует конечное подмножество A из этих предложений, приводящая к противоречию. Пусть B содержит все предложения A за исключением ¬φ. Тогда любое поле с дастатоно болшой характеристики есть модель B, и ¬φ вместе с B не выполнима. Это означает, что φ выполняется в каждой моделе B, в частности φ выполнено в каждом поле достаточно большой характеристики.
  • Если теория имеет произвольно большие конечные модели, или одну бесконечную модель, то она имеет модели сколь угодно большой мощности. (Это частный случай теоремы Лёвенгейма — Скулема).
    • Так, например, существуют нестандартные модели арифметики Пеано с несчётным числом натуральных чисел.
    • Доказательство. Пусть М есть модель исходной теории. Добавим к языку один символ для каждого элемента множества T большой мощности. Затем добавим набор предложений, которые говорят, что все эти символы различны. Поскольку для каждого конечного подмножествоа этой новой теории есть модель, то есть модель и для самой теории.
  • Построение нестандартной модели вещественных чисел, то есть, расширения теории вещественных чисел, содержащего «бесконечно малые».
    • Пусть Σ есть аксиоматизация теории вещественных чисел первого порядка. Рассмотрим теорию, полученную путем добавления новой константы ε к языку и предложениями ε > 0 и ε < 1/n для всех натуральных чисел n. Очевидно, что стандартные вещественные числа являются моделью для любого конечного подмножества из этих аксиом. По теореме компактности существует модель удовлетворяющая всем предложениям. То есть модель с бесконечно малым числом ε.

О доказательствах

Теорема следует из теоремы Гёделя о полноте. Гедель доказал теорему компактности изначально именно так. Позже были найдены «чисто семантические» доказательства. Одно из этих доказательств опирается на ультрапределы.

Примечания

    Ссылки

    • Boolos, George. Computability and Logic / George Boolos, Jeffrey, Richard, Burgess, John. — fourth. — Cambridge University Press, 2004.
    • Chang, C.C. Model Theory / C.C. Chang, Keisler, H. Jerome. — third. — Elsevier, 1989. ISBN 0-7204-0692-7.
    • Dawson, John W. junior (1993). “The compactness of first-order logic: From Gödel to Lindström”. History and Philosophy of Logic. 14: 15—37. DOI:10.1080/01445349308837208.
    • Hodges, Wilfrid. Model theory. — Cambridge University Press, 1993. ISBN 0-521-30442-3.
    • Marker, David. Model Theory: An Introduction. — Springer, 2002. ISBN 0-387-98760-6.
    • Truss, John K. Foundations of Mathematical Analysis. — Oxford University Press, 1997. ISBN 0-19-853375-6.

    Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

    Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

    Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




    Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

    Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

    2019-2025
    WikiSort.ru - проект по пересортировке и дополнению контента Википедии