Теоре́ма Гёделя о полноте́ исчисле́ния предика́тов является одной из фундаментальных теорем математической логики: она устанавливает однозначную связь между логической истинностью высказывания и его выводимостью в логике первого порядка. Впервые эта теорема была доказана Куртом Гёделем в 1929.
Формула является выводимой в исчислении предикатов первого порядка тогда и только тогда, когда она общезначима (истинна в любой интерпретации при любой подстановке). |
Иными словами, если - тождественно истинная формула исчисления предикатов, то доказуема в исчислении предикатов.[1]
Из тождественной истинности получаем, что множество не имеет модели. Из теоремы о существовании модели следует, что противоречиво, то есть - теорема исчисления предикатов. По правилу вывода получаем, что доказуема.[1]
![]() |
Это заготовка статьи по математической логике. Вы можете помочь проекту, дополнив её. |
В этой статье не хватает ссылок на источники информации. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .