WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Витта — теорема о свойствах конечномерных ортогональных пространств над полями произвольного вида. Она утверждает, что любая изометрия между двумя подпространствами конечномерного ортогонального векторного пространства может быть продолжена на все пространство.

Формулировка

Пусть  — невырожденное конечномерное ортогональное векторное пространство (пространство с невырожденной симметричной или кососимметричной билинейной формой),  — два его изометричных подпространства. Тогда любая изометрия может быть продолжена до изометрии , совпадающей с изометрией на подпространстве .

Приложения

Из теоремы Витта следует так называемая теорема о сокращении:

  • Предположим не вырожденная квадратичная форма и форма эквивалентна форме над полем характеристики не равной 2. Тогда форма эквивалентна форме над этим полем.

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии