Обозначения
Для комплексных СЛАУ, в методе используются два вида скалярных произведений, в случае действительных матрицы и правой части они совпадают.
Алгоритм метода
Для решения СЛАУ вида
, где
— комплексная матрица, стабилизированным методом бисопряжённых градиентов может использоваться следующий алгоритм[1][3]:
- Подготовка перед итерационным процессом
- Выберем начальное приближение
-я итерация метода
- Критерий остановки итерационного процесса
Кроме традиционных критериев остановки, как число итераций (
) и заданная невязка (
), так же остановку метода можно производить, когда величина
стала меньше некоторого заранее заданного числа
.
Примечания
- 1 2 Henk A. van der Vorst. Iterative Krylov Methods for Large Linear System. — Cambridge University Press, 2003. — 221 с. — ISBN 9780521818285.
- ↑ T. Huttunen, M. Malinen, P. Monk. Solving Maxwell’s Equations using Ultra Weak Variational Formulation (англ.). — 2006.
- ↑ A. Formmer, V. Hannemann, B. Nokel, Th. Lippert, K. Schilling. Accelerating Wilson Fermion Matrix Invesion by Means of the Stibilized Biconjugate Cgadient Agorithm (англ.). — 1994.
 |
---|
Прямые методы | |
---|
Итерационные методы | |
---|
Общее | |
---|
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .