WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Сравнение методов градиентного спуска(зеленый) и метода сопряженных градиентов для

Метод сопряженных градиентов — численный метод решения систем линейных алгебраических уравнений, является итерационным методом Крыловского типа.

Постановка задачи

Пусть дана система линейных уравнений: . Причём матрица системы — это действительная матрица, обладающая следующими свойствами: , то есть это симметричная положительно определённая матрица. Тогда процесс решения СЛАУ можно представить как минимизацию следующего функционала:

За обозначено скалярное произведение. Минимизируя данный функционал, используя подпространства Крылова, получаем алгоритм метода сопряженных градиентов.

Алгоритм

Подготовка перед итерационным процессом
  1. Выберем начальное приближение
-я итерация метода[1]
Критерий остановки

Поскольку минимизируемый функционал квадратичный, то процесс должен дать ответ на -й итерации, однако при реализации метода на компьютере существует погрешность представления вещественных чисел, в результате чего может потребоваться и больше итераций. Так же оценивать точность можно по относительной невязке , и прекращать итерационный процесс когда невязка станет меньше заданного числа.

Алгоритм для предобусловленной системы

Пусть предобусловленная система имеет вид: , тогда алгоритм метода для такой системы можно записать следующим образом:

Подготовка перед итерационным процессом
  1. Выберем начальное приближение
-я итерация метода
После итерационного процесса
  1. , где  — приближенное решение системы,  — общее число итераций метода.
Критерий остановки

В данном случае можно использовать те же критерии остановки, что и для обычной системы, только с учётом предобуславливания. Например относительная невязка станет вычисляться как: , однако можно пользоваться и невязкой исходной системы, которая вычисляется следующим образом:

Особенности и обобщения

Как и все методы на подпространствах Крылова, метод сопряженных градиентов от матрицы требует только возможность умножать её на вектор, что приводит к возможности использовать специальные форматы хранения матрицы(такие, как разреженный) и сэкономить память на хранении матрицы.
Метод часто используется для решения конечноэлементых СЛАУ.
У метода есть обобщения: метод бисопряженных градиентов, для работы с несимметричными матрицами. И комплексный метод сопряженных градиентов, где матрица может содержать комплексные числа, но должна удовлетворять условию: , то есть быть самосопряженной-положительно определённой матрицей.

Примечания

  1. Henk A. van der Vorst. Iterative Krylov Methods for Large Linear System. — Cambridge University Press, 2003. — 221 с. ISBN 9780521818285.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии