WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Другое значение этого термина: группа, совпадающая со своим коммутантом[en]

Совершенная группа[1]группа , такая что отображение является изоморфизмом. Это отображение посылает элемент в автоморфизм сопряжения . Инъективность этого отображения равносильна тривиальности центра, а сюръективность — тому, что каждый автоморфизм является внутренним.

Примерами являются симметрические группы при (теорема Гёльдера); при этом группа имеет нетривиальный центр, а у группы существует внешний автоморфизм[en].

Автоморфизмы простой группы образуют почти простую группу, а автоморфизмы неабелевой простой группы — совершенную группу.

Не любая группа, изоморфная своей группе автоморфизмов, является совершенной — необходимо, чтобы изоморфизм осуществлялся отображением сопряжения. Примером группы, для которой , но которая не является совершенной, является группа диэдра [2].

Примечания

  1. Каргаполов М. И., Мерзляков Ю. И. Основы теории групп. — 2-е изд. — Москва: Наука, 1977. — С. 62. — 240 с.
  2. Robinson, section 13.5

Литература

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии