Говорят, что группа почти проста, если она содержит неабелеву простую группу и содержится в группе автоморфизмов этой простой группы. В символьной записи группа A почти проста, если существует простая группа S, такая, что [1].
Группа автоморфизмов неабелевой простой группы является полной группой (отображение смежных классов является изоморфизмом в группу автоморфизмов), но собственная подгруппа полной группы автоморфизмов не обязательно полна.
Согласно гипотезе Шрайера[en], ныне повсеместно принятой как следствие классификации простых конечных групп, группа внешних автоморфизмов[en] конечной простой группы является разрешимой группой[2]. Таким образом, конечная простая группа является расширяемой разрешимой группы по простой группе.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .