Михаил Григорьевич Слободянский | |
---|---|
![]() | |
Дата рождения | 23 июля (5 августа) 1912 |
Место рождения |
Махновка, Киевская губерния, Российская империя |
Дата смерти | 3 августа 1988 (75 лет) |
Место смерти | Москва, РСФСР, СССР |
Страна |
![]() |
Научная сфера |
механика, прикладная математика |
Место работы | МЭИ |
Альма-матер | МГУ (мехмат) |
Учёная степень | доктор физико-математических наук |
Учёное звание | профессор |
Награды и премии |
![]() |
Михаи́л Григо́рьевич Слободя́нский (23 июля [5 августа] 1912, Махновка Винницкой области — 3 августа 1988, Москва) — советский учёный-механик и математик, педагог высшей школы, доктор физико-математических наук, профессор.
Родился 5 января 1912 года в селе Махновка (с 1935 по 2016 годы носило название Комсомольское[1]) Бердичевского уезда Киевской губернии (ныне село входит в Казатинский район Винницкой области Украины)[2].
После окончания средней школы в 1932 году поступил на механико-математический факультет МГУ, который закончил за 4 года в 1936 году. В 1938 году защитил кандидатскую, в 1940 году — докторскую диссертацию[3].
В 1940 году в возрасте 28 лет возглавил кафедру теоретической механики Московского энергетического института, которой заведовал до 1974 года[4].
Под руководством М. Г. Слободянского при кафедре была организована учебная мастерская, установлена малая ЭВМ, а также создана специальная установка, на которой были выполнены экспериментальные исследования первой отечественной конструкции бескривошипного аксиально-поршневого компрессора КБЛ-5; полученные результаты легли в основу создания промышленных образцов многоступенчатых компрессоров с давлением нагнетания 10, 20 и 40 МПа. При кафедре в точение ряда лет действовали методические семинары для подготовки молодых преподавателей Москвы к проведению практических занятий и чтению лекций по теоретической и технической механике; многие выпускники мехмата той поры проходили педагогическую практику «у Слободянского в МЭИ на „Термехе“»[5][6].
М. Г. Слободянский был неизменным научным руководителем аспирантуры на кафедре теоретической механики, и под его руководством многие молодые преподаватели кафедры (А. М. Александров, Н. Б. Ерофеева, В. В. Подалков, Ш. Х. Тубеев, В. Ф. Устинов, Я. Я. Хотин) защитили свои кандидатские диссертации[7].
После того, как М. Г. Слободянскому пришлось по состоянию здоровья оставить заведование кафедрой теоретической механики, он ещё много лет продолжал работать на кафедре в должности профессора-консультанта.
Умер 3 августа 1988 года в Москве[8].
В круг научных интересов М. Г. Слободянского входили теория упругости, прикладная математика, математическая физика, методика преподавания теоретической механики[4].
В 1939 году М. Г. Слободянский разработал[9] новый приближённый метод решения краевых задач для уравнений в частных производных эллиптического типа — метод прямых. Вариант этого метода, предложенный Слободянским, предусматривает в двумерных краевых задачах приближённую замену производных по одной из переменных их разностными аналогами, что позволяет свести исходную задачу к соответствующей задаче уже для системы обыкновенных дифференциальных уравнений. Слободянский применил данный подход, в частности, к бигармоническому уравнению и к уравнению Пуассона (причём в случае уравнения Пуассона он сумел получить конечное уравнение для характеристического определителя и найти общие выражения для неизвестных функций); кроме того, он исследовал погрешность метода прямых и наметил порядок его применения к пространственным задачам[10][11]. Позднее метод прямых (применявшийся и к другим типам уравнений в частных производных) развивался преимущественно как сугубо численный метод, который с развитием средств вычислительной техники получил весьма обширную область приложения[12].
М. Г. Слободянским исследовалось поведение некоторых полигональных профилей при кручении, причём для вычисления касательных напряжений и для исследования концентрации таких напряжений во входящих углах данных профилей он использовал метод конечных разностей[13]. В ходе данного исследования он разработал метод для численного нахождения производной от решения краевой задачи для уравнения эллиптического типа, использующий функцию Грина (метод сводится к вычислению сеточного аналога производной функции Грина и последующему интегрированию — по рассматриваемой области — произведения этого аналога на правую часть уравнения)[14].
Много работал М. Г. Слободянский в области получения двусторонних оценок решений уравнений с самосопряжёнными операторами (как внутри, так и на границе областей)[15][16]. Ключевые результаты, относящиеся к данной тематике, были изложены им в двух статьях, опубликованных в 1952 году[17], хотя и позже он не раз возвращался к данной тематике.
К этой тематике тесно примыкают задачи о получении двусторонних оценок не для самих решений упомянутых уравнений, а для связанных с этими решениями линейных функционалов. В 1953 году М. Г. Слободянский предложил[18] простой и изящный метод решений таких задач[19]. В том же году он предложил также эффективный приём получения оценки снизу для функционала энергии в задачах с самосопряжёнными операторами, позднее названный приёмом Слободянского[20].
Совместно с Л. Н. Тер-Мкртчяном М. Г. Слободянский сделал важное дополнение к классическому результату о возможности представить общее решение уравнений теории упругости в пространственном случае в виде линейной комбинации четырёх гармонических функций действительных переменных и их производных (представление Папковича — Нейбера): было показано, что из этих функций существенно независимых — только три, поскольку можно, не нарушая общности, одну из них принять тождественно равной нулю (если только коэффициент Пуассона не равен )[21][22]. При этом М. Г. Слободянский в 1954 году доказал также[23], что как для односвязной конечной области, так и для бесконечной области, внешней по отношению к замкнутой поверхности, ограничение можно отбросить[24][25].
М. Г. Слободянский внёс также значительный вклад в разработку методики преподавания теоретической механики в технических вузах[15]. В курсе лекций по теоретической механике, который читал Слободянский, имелось немало интересных методических находок. Например, в разделе «Статика твёрдого тела» он сумел добиться компактного (и вместе с тем строгого) изложения материала при помощи отказа от предварительного изложения теории пар сил. Вместо этого он полагал исходным пунктом теорему о приведении системы сил к двум сил, на которую существенно опирался и при доказательстве теоремы о приведении системы сил к силе и паре сил, и при выводе условий равновесия системы сил (вывод же основных свойств пар сил следовал в курсе позже и был совсем несложным)[26].
Жена — Елена Васильевна Слободянская.
Сын — Борис Михайлович Слободянский, кандидат технических наук (1973)[27]; много лет проработал в Вычислительном центре МЭИ.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .