Серединный многоугольник (многоугольник Казнера[1][2]) — многоугольник, вершинами которого являются середины рёбер исходного многоугольника[3][4].
Серединный треугольник обладает тем же центроидом и теми же медианами, что и исходный треугольник. Периметр серединного треугольника равен полупериметру исходного треугольника, а площадь равна четверти площади исходного треугольника (показывается с помощью формулы Герона). Ортоцентр серединного треугольника совпадает с центром описанной окружности исходного треугольника.
В силу теоремы Вариньона серединный четырёхугольник всегда является параллелограммом, который называется вариньоновым. Если четырёхугольник является простым, то площадь параллелограмма равна половине площади исходного четырёхугольника. Периметр параллелограмма равен сумме диагоналей исходного четырёхугольника.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .