WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Разбие́ние числа́  — это представление в виде суммы положительных целых чисел, называемых частями. При этом порядок следования частей не учитывается (в отличие от композиций), то есть разбиения, отличающиеся только порядком частей, считаются равными. В канонической записи разбиения части перечисляются в невозрастающем порядке.

Число разбиений натурального числа является одним из фундаментальных объектов изучения в теории чисел.

Примеры

Например, {3, 1, 1} или {3, 2} — разбиения числа 5, поскольку 5 = 3 + 1 + 1 = 3 + 2. Всего существует разбиений числа 5: {1, 1, 1, 1, 1}, {2, 1, 1, 1}, {2, 2, 1}, {3, 1, 1}, {3, 2}, {4, 1}, {5}.

Некоторые значения числа разбиений приведены в следующей таблице[1]:

np(n)Разбиения
11{1}
22{1, 1}, {2}
33{1, 1, 1}, {2, 1}, {3}
45{1, 1, 1, 1}, {2, 1, 1}, {2, 2}, {3, 1}, {4}
57{1, 1, 1, 1, 1}, {2, 1, 1, 1}, {2, 2, 1}, {3, 1, 1}, {3, 2}, {4, 1}, {5}
611
715
822
930
1042
20627
50204 226
100190 569 292
100024 061 467 864 032 622 473 692 149 727 991

Число разбиений

Производящая функция

Последовательность числа разбиений имеет следующую производящую функцию:

Эта формула была открыта Эйлером в 1740 году.

Пентагональная теорема Эйлера

Изучая производящую функцию последовательности , Эйлер сосредоточил внимание на её знаменателе, то есть, на произведении . Это бесконечное произведение при раскрытии скобок приобретает следующий вид:

Показатели степеней в правой части — числа вида где  — целое число, а знак при равен . Для натуральных :  — это пятиугольные числа.[2]

Согласно этому наблюдению, Эйлер предположил, что должна быть верна Пентагональная теорема:

.

Впоследствии эта теорема была доказана Эйлером. Она позволяет вычислять числа разбиений при помощи деления формальных степенны́х рядов.

Асимптотические формулы

Асимптотическое выражение для количества разбиений было получено Харди и Рамануджаном и впоследствии уточнено Радемахером. Оригинальное выражение Харди — Рамануджана[источник не указан 2278 дней]

при

даёт, например, . Уточнение Радемахера представляет число разбиений в виде сходящегося ряда

где

Здесь суммирование ведётся по , взаимно простым с , а  — сумма Дедекинда. Ряд сходится очень быстро.

Рекуррентные формулы

Количество разбиений числа на слагаемые, не превышающие , удовлетворяет рекуррентной формуле:

с начальными значениями:

для всех

При этом количество всевозможных разбиений числа равно .

Диаграммы Юнга

Диаграмма Юнга разбиения 10 = 5 + 4 + 1.

Разбиения удобно представлять в виде наглядных геометрических объектов, называемых диаграммами Юнга, в честь английского математика Альфреда Юнга[en]. Диаграмма Юнга разбиения  — подмножество первого квадранта плоскости, разбитое на ячейки, каждая из которых представляет собой единичный квадрат. Ячейки размещаются в строки, первая строка имеет длину , над ней расположена строка длиной , и т. д. до -й строки длины . Строки выровнены по левому краю.

Более формально, диаграмма Юнга — это замыкание множества точек таких, что

и

где обозначает целую часть .

В англоязычной литературе диаграммы Юнга часто изображают отражёнными относительно оси абсцисс.

Схожий объект, называемый диаграммой Феррерса, отличается тем, что

  • вместо ячеек изображаются точки;
  • диаграмма транспонируется: ряды и столбцы меняются местами.

Применение

Разбиения естественным образом возникают в ряде математических задач. Наиболее значимой из них является теория представлений симметрической группы, где разбиения естественно параметризуют все неприводимые представления. Суммы по всем разбиениям часто встречаются в математическом анализе.

См. также

Примечания

  1. Последовательность A000041 в OEIS
  2. Табачников С. Л., Фукс Д. Б. Математический дивертисмент. — МЦНМО, 2011. ISBN 978-5-94057-731-7.

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии