WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Душа — компактное тотально выпуклое тотально геодезическое подмногообразие риманова многообразия , являющееся его деформационным ретрактом.

Обычно предполагается, что  — полное связное риманово многообразие с секционной кривизной K  0.

Примеры

  • У параболоида M = {(x,y,z) : z = x2 + y2}, начало координат (0,0,0) — душа M. При этом не любая точка x, принадлежащая M, является его душой, так как могут существовать геодезические петли, начинающиеся в точке x.
  • У бесконечного цилиндра M = {(x,y,z) : x2 + y2 = 1} любая «горизонтальная» окружность {(x,y,z) : x2 + y2 = 1} с фиксированной z является душой M.

История

Термин душа введён Чигером (англ.) и Громолом (англ.) в 1972 году[1] в статье, где они, в частности, доказали теорему о душе. Теорема обобщала более раннюю теорему Громола и Мейера[2]. В той же статье Чигером и Громолом сформулирована гипотеза о душе, которая была доказана Григорием Перельманом[3] в 1994 году очень кратко и красиво.

Свойства

Ниже предполагаем, что  — это полное связное риманово многообразие с секционной кривизной K  0.

Связанные открытые вопросы

  • Гипотеза о двойной душе утверждает[5], что любое компактное многообразие неотрицательной секционной кривизны можно покрыть двумя расслоениями на диски.

Примечания

  1. Cheeger, Jeff & Gromoll, Detlef (1972), "On the structure of complete manifolds of nonnegative curvature", Annals of Mathematics. Second Series Т. 96: 413-443, MR: 0309010, ISSN 0003-486X, DOI 10.2307/1970819
  2. Gromoll, Detlef & Meyer, Wolfgang (1969), "On complete open manifolds of positive curvature", Annals of Mathematics. Second Series Т. 90: 75-90, MR: 0247590, ISSN 0003-486X, DOI 10.2307/1970682
  3. Perelman, Grigori (1994), "Proof of the soul conjecture of Cheeger and Gromoll", Journal of Differential Geometry Т. 40 (1): 209-212, MR: 1285534, ISSN 0022-040X, <http://www.intlpress.com/JDG/archive/1994/40-1-209.pdf>. Проверено 23 июля 2011.
  4. Шарафутдинов, V. A. (1979), "О выпуклых множествах в многообразии неотрицательной кривизны", Матем. заметки Т. 26 (1): 129—136
  5. K. Grove, Geometry of and via smmetries

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии