Гипотеза Лежандра — математическая гипотеза из семейства результатов и гипотез относительно интервалов между простыми числами, согласно которой для любого натурального существует простое число между и . Является одной из проблем Ландау. Сформулирована Лежандром[когда?], по состоянию на 2018 год не была ни доказана, ни опровергнута.
Из теоремы о распределении простых чисел следует, что число простых чисел между и [1] асимптотически стремится к . Поскольку это число растёт при росте , это даёт основания для гипотезы Лежандра.
Если гипотеза верна, интервал между любым простым и следующим простым всегда должен быть порядка [2], а в -нотации интервал равен . Две более сильные гипотезы — гипотеза Андрицы и гипотеза Оппермана — предполагают то же самое поведение интервалов. Гипотеза не даёт решение гипотезы Римана, но усиливает одно из следствий в случае верности гипотезы.
Если верна гипотеза Крамера (о том, что промежутки имеют порядок ), то гипотеза Лежандра будет следовать из неё для достаточно больших . Крамер также показал, что из гипотезы Римана вытекает более слабая граница размера наибольшего интервала между простыми числами[3].
Контрпример в районе 1018 должен был бы иметь интервал в 50 миллионов раз больше среднего интервала.
Из гипотезы Лежандра следует, что по меньшей мере одно простое может быть найдено в каждой половинке оборота спирали Улама.
В начале 2000-х годов установлено, что существует простое число в интервале для всех больших [4].
Таблица максимальных интервалов простых чисел показывает, что гипотеза выполняется до [5].
Было доказано, что для бесконечного количества чисел выполняется:
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .