WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В теории чисел гипотеза Артина — это гипотеза о существовании и количественной оценке простых чисел, по модулю которых заданное целое число является первообразным корнем.

Формулировка

Для любого целого числа a, не являющегося точным квадратом и отличного от -1, существует бесконечно много простых чисел, по модулю которых a является первообразным корнем. Более того, для количества таких простых чисел не превышающих x справедлива асимптотика:

при

где — константа, зависящая только от a.

В настоящий момент неизвестно даже, верна ли гипотеза для конкретного числа a=2.

Пример

Число 2 является первообразным корнем, в частности, по модулю 3 и по модулю 5, но не по модулю 7. Последовательность простых чисел, по модулю которых 2 является первообразным корнем, начинается так:

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, … (последовательность A001122 в OEIS)

На данный момент остаётся открытым вопрос о бесконечности этой последовательности. Гипотеза Артина предполагает утвердительный ответ на этот вопрос.

См. также

Ссылки

  • Сендеров В., Спивак А. Малая теорема Ферма // Квант. — 2000. № 4. С. 15-18.
  • M. Ram Murty (1988). “Artin's conjecture for primitive roots”. Mathematical Intelligencer. 10 (4): 59–67. DOI:10.1007/BF03023749.
  • К. Хооли. Применение методов решета в теории чисел. — Наука, 1987.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии