WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Арифметическая группа — это группа, получаемая как целые точки алгебраической группы, например, Арифметические группы возникают естественным образом при изучении арифметических свойств квадратичных форм и других классических областей теории чисел. Они также являются источником для очень интересных примеров римановых многообразий, а потому представляют интерес для дифференциальной геометрии и топологии. Наконец, эти две области объединяются в теорию автоморфных форм[en], которая является фундаментальной в современной теории чисел.

История

Одним из источников математической теории арифметических групп является алгебраическая теория чисел. Классическую теорию приведения квадратичных и эрмитовых форм Шарля Эрмита, Германа Минковского и других можно рассматривать как вычисление фундаментальных областей действий некоторых арифметических групп на соответствующих симметрических пространствах[1][2]. Эта область была связана с геометрией чисел Минковского и ранними разработками в изучении арифметических инвариантов числовых полей,таких как дискриминант. Арифметические группы можно рассматривать как сильное обобщение групп единиц числовых полей на некоммутативные условия.

Те же группы появляются также в аналитической теории чисел при изучении классических модулярных форм и при разработке их обобщений. Конечно, две области были связаны, как можно видеть в примере лагландовского вычисления объёма некоторых фундаментальных областей с помощью аналитических методов[3]. Кульминацией этой классической теории была работа Зигеля, который показал во многих случаях конечность объёма фундаментальной области.

Для развития современной теории была необходима подготовительная работа и эту работу в области алгебраических групп сделали Арман Борель, Андре Вейль, Жак Титс и другие[4][5]. Вскоре после этого Борель и Хариш-Чандра доказали конечность кообъёма в полной общности[6]. Тем временем наблюдался прогресс в общей теории решёток в группах Ли, который обеспечили работы Атле Сельберга, Григория Маргулиса и Давида Каждана, М. С. Рагунатана и других. Современное положение после этого периода было зафиксировано в трактате Рагунатана, опубликованном в 1972[7].

В семидесятых годах Маргулис революционизировал эту область, доказав, что в «большинстве» случаев арифметические построения применимы ко всем решёткам в данной группе Ли[8]. Некоторые ограниченные результаты в этом направлении были получены ранее Селбергом, но методы Маргулиса (использование эргодических теоретических средств для действия на однородные пространства) были совершенно новыми в этом контексте и оказали крайне высокое влияние на последующих исследователей, эффективно обновляя старую дисциплину геометрии чисел, что позволило самому Маргулису доказать гипотезу Оппенгейма[en]. Более строгие результаты (Теоремы Ратнер[en]) были позднее получены Мариной Ратнер.

В другом направлении, классическая теория модулярных форм расцвела в виде современной теории автоморфных форм. Движущей силой этого расцвета в большей части была программа, предложенная Робертом Ленглендсом. Одним из основных средств, используемых здесь, является формула следов[en], представленная в работе Селберга[9] и развитая для более общих условий Джеймсом Артуром[10].

Наконец, арифметические группы часто используются для построения интересных примеров локально симметричных римановых многообразий. Особенно активно исследования проводились в области арифметических гиперболических 3-многообразий, о которых Тёрстон писал[11]: «...часто имеют особую красоту».

Определение и построение

Арифметические группы

Если является алгебраической подгруппой группы для некоторого , то мы можем определить арифметическую подгруппу группы как группу целых точек . В общем случае не очевидно, как точно определить понятие «целых точек» -группы, а подгруппа, определённая выше, может меняться, если мы возьмём другое вложение

Тогда лучшее определение понятия — взять в качестве определения арифметической подгруппы группы любую группу , которая соизмерима[en] (это значит, что как , так и являются конечными множествами) с группой , определённой выше (с учётом любого вложения в ). По этому определению с алгебраической группой ассоциирован набор «дискретных» подгрупп, соизмеримых друг с другом.

Использование числовых полей

Естественным обобщением вышеприведённого построения является следующее: пусть числовое поле с кольцом целых , а — алгебраическая группа над . Если нам задано вложение , определённое над , то подгруппа может быть с полным основанием названа арифметической группой.

С другой стороны, класс групп, полученных таким образом, не больше, чем класс арифметических групп, определённых выше. Более того, если мы рассмотрим алгебраическую группу над , полученную ограничением скаляров из в , и -вложение , порождённое (где ), то группа, построенная выше, совпадает с .

Примеры

Классическим примером арифметической группы является или тесно связанные группы , и . Для группа или, иногда, , называется модулярной группой, так как она связана с модулярной кривой. Похожими примерами являются модулярные группы Зигеля[en] .

Другие хорошо известные и изученные примеры — группы Бианки[en] , где является свободным от квадратов целым, а является кольцом целых в поле , и модулярные группы Гильберта — Блюметраля[en] .

Другие классические примеры задаются целыми элементами в ортогональной группе квадратичных форм, определённых над числовым полем, например, . Связанное построение — выбор групп единиц порядков[en] в алгебрах кватернионов над числовыми полями (например, порядок кватернионов Гурвица[en]). Похожие построения можно осуществить с унитарными группами эрмитовых форм и хорошо известным примером является модулярная группа Пикарда[en].

Арифметические решётки в полупростых группах Ли

Когда является группой Ли, можно определить арифметическую решётку в следующим образом: для любых алгебраических групп , определённых над , таких, что существует морфизм с компактным ядром, образ арифметической подгруппы в является арифметической решёткой в . Поэтому, например, если и являются подгруппами , то является арифметической решёткой в (однако существует много больше решёток, соответствующих другим вложениям). Например, является арифметической решёткой в .

Теорема Бореля — Хариш-Чандры

Решётка[en] в группе Ли обычно определяется как дискретная подгруппа с конечным кообъёмом. Терминология, представленная выше, сцеплена с этой, поскольку теорема, принадлежащая Борелю и Хариш-Чандре, утверждает, что арифметическая подгруппа в полупростой группе Ли имеет конечный кообъём (дискретность очевидна).

Теорема более точна, она утверждает, что арифметическая решётка является кокомпактной тогда и только тогда, когда «форма» группы , используемая для её определения (т.е. -группа ) анизотропна. Например, арифметическая решётка, ассоциированная с квадратичной формой от переменных над , будет кокомпактной в ассоциированной ортогональной группе тогда и только тогда, когда квадратичная форма не обращается в нуль в любой точке на .

Теорема Маргулиса об арифметичности

Блистательный результат, полученный Маргулисом, является частичным обращением теоремы Бореля — Хариш-Чандры: для определённых групп любая решётка является арифметической. Этот результат верен для всех неприводимых решёток в полупростых группах Ли вещественного ранга, большего двух[12][13]. Например, все решётки в являются арифметическими, если . Главным новым элементом, который использовал Маргулис для доказательства теоремы, была супержёсткость[en] решёток в группах высокого ранга, которую он доказал для получения своего результата.

Неприводимость играет роль, только если имеет множитель с вещественным рангом единица (в противном случае теорема выполняется всегда) и не проста. Это означает, что для любого разложения решётка несоизмерима с произведением решёток в каждом множителе . Например, решётка в неприводима, в то время как таковой не является.

Теорема Маргулиса об арифметичности (и супержёсткости) выполняется для некоторых групп Ли ранга 1, а именно для и исключительной группы [14][15]. Известно, что теорема не выполняется для всех групп для и для при . Не известны неарифметические решётки в группах , если .

Арифметические фуксовы и кляйновы группы

Арифметическая фуксова группа строится из следующих данных: чисто вещественное числовое поле[en] , алгебра кватернионов над и порядок в . Требуем, чтобы для одного вложения алгебра была изоморфна матричной алгебре , а все остальные должны быть изоморфны кватернионам Гамильтона. Тогда группа единиц является решёткой в , которая изоморфна и кокомпактна во всех случаях, за исключением случаев, когда является матричной алгеброй над . Все арифметические решётки в получаются таким образом (с точностью до соизмеримости).

Арифметические кляйновы группы строятся аналогично, за исключением того, что от требуется наличие в точности одного комплексного места, а для всех вещественных мест должны быть кватернионами Гамильтона. Они исчерпывают все арифметические классы соизмеримости в

Классификация

Для любой простой полупростой группы Ли , теоретически, возможно классифицировать (с точностью до соизмеримостью) все арифметические решётки в , аналогично случаям , описанным выше. Это сводится к классификации алгебраических групп, вещественные точки которых изоморфны с точностью до компактного множителя группе [13].

Задача о конгруэнтной подгруппе

Конгруэнтная подгруппа является (грубо говоря) подгруппой арифметической группы, определённой выбором всех матриц, удовлетворяющих некоторым уравнениям по модулю целого числа, например, выбором группы 2 х 2 целочисленных матриц с диагональными (соответственно, внедиагональными) элементами, конгруэнтными 1 (соответственно, 0) по модулю положительного целого числа. Они всегда являются подгруппами конечного индекса, а задача о конгруэнтной подгруппе, грубо говоря, спрашивает, получаются ли все подгруппы таким образом. Гипотеза (обычно приписываемая Серру), утверждает, что это верно для (неприводимых) решёток в группах высокого ранга и неверно для групп ранга единица. Гипотеза остаётся открытой в такой общности, но имеется много результатов, устанавливающую верность гипотезы для конкретных решёток (для положительного и отрицательного случаев).

-арифметические группы

Вместо выбора целых точек в определении арифметической решётки можно взять точки, которые являются целыми только вне конечного набора простых чисел. Это ведёт к понятию -арифметической решётки (где означает набор чисел, обратных простым). Прототипичным примером является . Они являются естественными решётками в некоторых топологических группах, например, является решёткой в

Определение

Формальное определение -арифметической группы для конечного множества простых чисел такое же, что и для арифметических групп с , заменённым на , где является произведением простых в .

Решётки в группах Ли над локальными полями

Теорема Бореля — Хариш-Чандры обобщается на -арифметические группы следующим образом: если является -арифметической группой группы в -алгебраической группе , то является решёткой в локально компактной группе

.

Некоторые приложения

Явные экспандеры

Арифметические группы со свойством (T) Каждана[en] или более слабым свойством ( ) Любоцкого и Циммера можно использовать для построения экспандеров (Маргулис) или чётных графов Рамануджана (Любоцкий — Филлипс — Сарнак[16][17]). Известно, что такие графы существуют в изобилии согласно вероятностным доводам, но явная природа таких построений делают их интересными.

Экстремальные поверхности и графы

Известно, что конгруэнтность накрытий арифметических поверхностей[en] приводит к поверхностям с большим радиусом инъективности[18]. Подобным же образом графы Рамануджана, построенные Любоцким, Филлипсом и Сарнаком, имеют большой обхват. Известно, что из свойства Рамануджана вытекает, что локальные обхваты графа почти всегда большие[19].

Изоспектральные многообразия

Арифметические группы могут быть использованы для построения изоспектральных многообразий. Впервые это построение реализовала Мари-Франс Винера[en][20] и вскоре после этого появились различные варианты её построения. Задача изоспектральности является, фактически, очень пригодной для изучения в ограниченных условиях арифметических многообразий[21].

Ложные проективные плоскости

Ложная проективная плоскость[22] — это комплексная поверхность, которая имеет те же числа Бетти, что и проективная плоскость , но не биголоморфна[en] ей. Первый пример такой плоскости нашёл Мамфорд. Согласно труду Клинглера (независимо проверенного Енгом) все они являются фактор-пространствами 2-шара по арифметическим решёткам в . Возможные решётки классифицировали Прасад и Енг, а завершили классификацию Картрайт и Стигер, проверившие, что они действительно соответствуют ложным проективным плоскостям.

Примечания

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии