В общей алгебре, термин кручение относится к элементам группы, имеющим конечный порядок, или к элементам модуля, аннулируемым регулярным элементом кольца.
Элемент g группы G называется элементом кручения, если он имеет конечный порядок, то есть существует натуральное n, такое что gn = e, где e обозначат нейтральный элемент группы. Группа называется периодической (или группой кручения), если все её элементы являются элементами кручения, и группой без кручения, если единственный элемент кручения — нейтральный. Известно, что любая абелева группа является модулем над кольцом целых чисел; в частности, определение элемента кручения для неё можно переформулировать так: существует ненулевое целое число, такое что умножение на это число переводит данный элемент в ноль. Это мотивирует следующее определение:
Элемент m модуля M над кольцом R называется элементом кручения, если существует ненулевой регулярный элемент r кольца R (то есть элемент, не являющийся левым или правым делителем нуля), аннулирующий m, то есть такой, что rm = 0. В случае работы с целостным кольцом предположение регулярности можно отбросить. Аналогичным образом определяются модуль кручения и модуль без кручения. В случае, если кольцо R коммутативно, можество всех элементов кручения модуля M образует подмодуль, называемый подмодулем кручения (в частности, для модуля над Z он называется подгруппой кручения).
Более общо, пусть M — модуль над кольцом R и S — мультипликативно замкнутая система кольца. Элемент m модуля M называется элементом S-кручения, если существует элемент мультипликативной системы, аннулирующий m. В частности, множество регулярных элементов кольца является наибольшей мультипликативной системой.
Пусть R — область главных идеалов, и M — конечнопорождённый R-модуль. Согласно соответствующей структурной теореме, этот модуль можно разложить в прямую сумму
где F — свободный R-модуль, а T(M) — подмодуль кручения модуля M. Для модулей, не являющихся конечнопорождёнными, такого разложения, вообще говоря, не существует: даже подгруппа кручения абелевой группы не обязательно является прямым слагаемым.
Пусть R — область целостности с полем частных Q, а M — R-модуль. Тогда можно рассмотреть Q-модуль (то есть векторное пространство)
Существует естественный гомоморфизм из абелевой группы M в абелеву группу MQ, и ядро этого гомоморфизма — в точности подмодуль кручения. Аналогично, для локализации кольца R по мультипликативной системе S
ядро естественного гомоморфизма — это в точности элементы S-кручения. Таким образом, подмодуль кручения можно понимать как множество тех элементов, которые отождествляются при локализации.
Понятие кручения играет важную роль в гомологической алгебре. Если M и N — модули над коммутативным кольцом R, функтор Tor позволяет получить семейство R-модулей Tori(M,N). При этом модуль S-кручения модуля M естественно изоморфен Tor1(M, RS/R). В частности, из этого сразу следует, что плоские модули являются модулями без кручения. Название Tor является сокращением от английского torsion (кручение).
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .