WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Критерий согласия Колмогорова предназначен для проверки гипотезы о принадлежности выборки некоторому закону распределения, то есть проверки того, что эмпирическое распределение соответствует предполагаемой модели.

Критерий однородности Смирнова используется для проверки гипотезы о принадлежности двух независимых выборок одному закону распределения, то есть о том, что два эмпирических распределения соответствуют одному и тому же закону.

Эти критерии носят имена математиков Андрея Николаевича Колмогорова и Николая Васильевича Смирнова.

Критерий Смирнова о проверке гипотезы об однородности двух эмпирических законов распределения является одним из наиболее часто используемых непараметрических критериев.

Статистика критерия Колмогорова

Пусть эмпирическая функция распределения (ЭФР) случайной величины , построенная по выборке , имеет вид:

где указывает, попало ли наблюдение в область :

Статистика критерия для эмпирической функции распределения определяется следующим образом:

где  — точная верхняя грань множества , - предполагаемая модель.

Распределение статистики Колмогорова

Обозначим нулевую гипотезу , как гипотезу о том, что выборка подчиняется распределению . Тогда по теореме Колмогорова для введённой статистики справедливо:

Учтём, что критерий имеет правостороннюю критическую область.

Принятие решения по критерию Колмогорова.
Если статистика превышает процентную точку распределения Колмогорова заданного уровня значимости , то нулевая гипотеза (о соответствии закону ) отвергается. Иначе гипотеза принимается на уровне .

Если достаточно близко к 1, то можно приблизительно рассчитать по формуле:

Асимптотическая мощность критерия равна 1.


Обозначим теперь за нулевую гипотезу гипотезу о том, что две исследуемые выборки подчиняются одному распределению случайной величины .

Теорема Смирнова.
Пусть — эмпирические функции распределения, построенные по независимым выборкам объёмом и случайной величины . Тогда, если , то , где .

Теорема Смирнова позволяет построить критерий для проверки двух выборок на однородность.

Принятие решения по критерию Смирнова.
Если статистика превышает квантиль распределения Колмогорова для заданного уровня значимости , то нулевая гипотеза (об однородности выборок) отвергается. Иначе гипотеза принимается на уровне .

См. также

Примечание 1

В критерии Колмогорова предпочтительней использование статистики с поправкой Большева в следующем виде . Распределение данной статистики уже не так сильно зависит от объема выборки. Зависимостью её распределения от объема выборки можно пренебречь при .

Примечание 2

Классический критерий Колмогорова предназначен для проверки простых гипотез. Если проверяется гипотеза о согласии наблюдаемой выборки с законом, все параметры которого известны, то критерий Колмогорова является свободным от распределения: неважно, с каким законом проверяется согласие. Если проверяемая гипотеза справедлива, предельным распределением статистики Колмогорова является распределение Колмогорова .

Всё меняется при проверке сложных гипотез, когда по анализируемой выборке оцениваются параметры теоретического закона, согласие с которым проверяется. При проверке сложных гипотез свобода от распределения теряется. При проверке сложных гипотез и справедливости проверяемой гипотезы распределения статистик непараметрических критериев согласия (и критерия Колмогорова) зависят от ряда факторов: от вида наблюдаемого закона, соответствующего проверяемой гипотезе; от типа оцениваемого параметра и числа оцениваемых параметров; в некоторых случаях от конкретного значения параметра (например, в случае семейств гамма- и бета-распределений); от метода оценивания параметров. Различия в предельных распределениях той же самой статистики при проверке простых и сложных гипотез настолько существенны, что пренебрегать этим ни в коем случае нельзя.

О применении критерия Колмогорова при проверке сложных гипотез

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии