WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Кольцо Крулля — коммутативное кольцо с относительно хорошими свойствами разложения на простые. Впервые были исследованы Вольфгангом Круллем в 1931 году[1]. Кольца Крулля являются многомерным обобщением дедекиндовых колец: дедекиндово кольцо — это в точности кольцо Крулля размерности не более 1.

В этой статье под словом «кольцо» подразумевается «коммутативное кольцо с единицей».

Определение

Пусть  — область целостности, а  — множество всех простых идеалов высоты 1, то есть простых идеалов, не содержащих других ненулевых простых идеалов. является кольцом Крулля тогда и только тогда, когда:

  1.  — кольцо дискретного нормирования для всех ,
  2. равняется пересечению этих колец дискретного нормирования (рассматриваемых как подкольца поля частных ).
  3. Любой ненулевой элемент содержится не более чем в конечном числе простых идеалов высоты 1.

Свойства

Кольцо Крулля факториально тогда и только тогда, когда каждый простой идеал высоты 1 является главным[2].

Пусть  — кольцо Зарисского (например, нётерово локальное кольцо). Если пополнение  — кольцо Крулля, то и  — кольцо Крулля.[3]

Примеры

  • Любое целозамкнутое нётерово кольцо является кольцом Крулля. В частности, дедекиндовы кольца являются кольцами Крулля. Обратно, все кольца Крулля целозамкнуты, так что для нётерова кольца свойство «быть кольцом Крулля» эквивалентно свойству «быть целозамкнутым».
  • Если  — кольцо Крулля, то кольцо многочленов и кольцо формальных степенных рядов являются кольцами Крулля.
  • Кольцо многочленов от бесконечного числа переменных над факториальным кольцом  — пример rольца Крулля, не являющегося нётеровым. Более общо, все факториальные кольца являются кольцами Крулля.
  • Пусть  — нётерова область с полем частных , и  — конечное расширение . Тогда целое замыкание в  — кольцо Крулля (частный случай теоремы Мори — Нагаты)[4].

Группа классов дивизоров

Все дивизорные идеалы кольца Крулля разлагаются (единственным образом) в произведение простых идеалов высоты 1, так что группу можно рассматривать как группу формальных линейных комбинаций (с целыми коэффициентами) простых идеалов высоты 1. Главные дивизоры образуют подгруппу , фактор по этой группе называется группой классов дивизоров. Эта группа тривиальна тогда и только тогда, когда кольцо факториально.

Дивизор Картье — это локально главный дивизор. Дивизоры Картье образуют подгруппу группы дивизоров . Все главные дивизоры являются дивизорами Картье, фактор дивизоров Картье по ним — это группа Пикара[en] обратимых пучков на .

Пример: в кольце группа классов дивизоров имеет порядок 2 (порождена дивизором ), тогда как группа Пикара тривиальна.

Примечания

  1. Krull, Wolfgang (1931), Allgemeine Bewertungstheorie (недоступная ссылка), J. Reine Angew. Math. 167: 160—196
  2. Крулля кольцо — статья из Математической энциклопедии. В. И. Данилов
  3. Бурбаки, глава 7, no 10, Предложение 16.
  4. Integral Closure of Ideals, Rings, and Modules, Том 13

Литература

  • Бурбаки Н. Коммутативная алгебра. — М: Мир, 1971.
  • Hazewinkel, Michiel, ed. (2001), Krull ring, Encyclopedia of Mathematics, Springer — ISBN 978-1-55608-010-4.
  • Hideyuki Matsumura, Commutative Ring Theory. Translated from the Japanese by M. Reid. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1986. xiv+320 pp. — ISBN 0-521-25916-9.
  • Samuel, Pierre. Lectures on unique factorization domains (англ.). Tata Institute of Fundamental Research Lectures on Mathematics 30, Bombay: Tata Institute of Fundamental Research (1964). Проверено 29 июля 2013.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии