Биективное доказательство — это техника доказательства, при которой находится биективная функция f : A → B между двумя конечными множествами A и B или сохраняющая размер биективная функция между двумя комбинаторными классами[en], чем доказывается одинаковость числа элементов, |A| = |B|. Место, где техника полезна — когда мы хотим знать размер A, но не можем найти прямого пути подсчёта элементов множества. В этом случае установление биекции между A и некоторым множеством B решает задачу, если число элементов множества B вычислить проще. Другое полезное свойство этой техники — природа биекции само по себе часто даёт мощную информацию о каждом из двух множеств.
Симметрия биномиальных коэффициентов утверждает, что
Это означает, что имеется точно столько же комбинаций k элементов из множества, содержащего n элементов, как и комбинаций n − k элементов.
Заметим, что две величины, для которых мы доказываем равенство, подсчитывают число подможеств размера k и n − k соответственно любого n-элементного множества S. Существует простая биекция между двумя семействами Fk и Fn − k подмножеств S — она связывает каждое k-элементное подмножество с его дополнением, которое содержит в точности оставшиеся n − k элементов множества S. Поскольку Fk и Fn − k имеют одинаковое число элементов, соответствующие биномиальные коэффициенты должны быть равны.
Доказательство. Мы считаем число способов выбрать k элементов из n-элементного множества. Снова, по определению, левая часть равенства равна числу способов выбора k элементов из n. Поскольку 1 ≤ k ≤ n − 1, мы можем фиксировать элемент e из n-элементного множества, так что оставшееся подмножество не пусто. Для каждого k-элементного множества, если e выбрано, существует
способов выбора оставшихся k − 1 элементов среди оставшихся n − 1 возможностей. В противном случае имеется
способов выбора оставшихся k элементов среди оставшихся n − 1 возможностей. Тогда есть
способов выбора k элементов.
Задачи, позволяющие комбинаторное доказательство, не ограничены биномиальными коэффициентами. По мере возрастания сложности задачи комбинаторное доказательство становится всё более изощрённым. Техника биективного доказательства полезно в областях дискретной математики, таких как комбинаторика, теория графов и теория чисел.
Наиболее классические примеры биективных доказательств в комбинаторике:
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .