Энхансер (англ.enhancer — усилитель, увеличитель) — небольшой участок ДНК, который после связывания с ним факторов транскрипции стимулирует транскрипцию с основных промоторовгена или группы генов. Энхансеры не обязательно находятся в непосредственной близости от генов, активность которых они регулируют, и даже не обязательно располагаются с ними на одной хромосоме. Энхансеры могут располагаться как в 5'-, так и в 3'-положении относительно матричной цепи регулируемого гена и в любой ориентации к ней. Энхансеры также могут находиться внутри интронов. Тем не менее для работы энхансера необходим его физический контакт с промотором, который осуществляется за счёт «выпетливания» ДНК между энхансером и промотором[1]. Молекулярный механизм действия энхансера заключается в том, что он благодаря собранному на нём белковому комплексу привлекает РНК-полимеразу II и кофакторы транскрипции в область промотора.
Энхансеры были впервые обнаружены в эукариотических системах[2][3], но впоследствии сходные примеры регуляции транскрипции были открыты и у прокариот[4].
Свойства энхансеров
Энхансерные участки хроматина обладают следующими свойствами[5]:
способны стимулировать транскрипцию генов-мишеней;
их активность не зависит от расстояния в геноме до регулируемого гена;
содержат особые последовательности нуклеотидов, обеспечивающие связывание факторов транскрипции;
Исходя из этих свойств, с помощью высокопроизводительных методов в геноме человека было обнаружено около миллиона потенциальных энхансеров[6][7].
Теории
На данный момент существует две теории, объясняющие механизм считывания информации с энхансера:
Энхансеосомы — основаны на высококоординированном действии и могут быть выключены из работы единичной точечной мутацией, удаляющей или перемещающей сайты связывания белков.
Гибкие системы — менее интегративные белки, независимо регулирующие экспрессию генов и лишь их суммарная активность влияет на транскрипцию.
↑ Thurman R. E., Rynes E., Humbert R., Vierstra J., Maurano M. T., Haugen E., Sheffield N. C., Stergachis A. B., Wang H., Vernot B., Garg K., John S., Sandstrom R., Bates D., Boatman L., Canfield T. K., Diegel M., Dunn D., Ebersol A. K., Frum T., Giste E., Johnson A. K., Johnson E. M., Kutyavin T., Lajoie B., Lee B. K., Lee K., London D., Lotakis D., Neph S., Neri F., Nguyen E. D., Qu H., Reynolds A. P., Roach V., Safi A., Sanchez M. E., Sanyal A., Shafer A., Simon J. M., Song L., Vong S., Weaver M., Yan Y., Zhang Z., Zhang Z., Lenhard B., Tewari M., Dorschner M. O., Hansen R. S., Navas P. A., Stamatoyannopoulos G., Iyer V. R., Lieb J. D., Sunyaev S. R., Akey J. M., Sabo P. J., Kaul R., Furey T. S., Dekker J., Crawford G. E., Stamatoyannopoulos J. A.The accessible chromatin landscape of the human genome.(англ.)// Nature.— 2012.— Vol.489, no. 7414.— P.75—82.— DOI:10.1038/nature11232.— PMID 22955617.[исправить]
См. также
STARR-seq — высокопроизводительный метод идентификации энхансеров в геномах.
Andersson, R. et al.(2014). An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 DOI:10.1038/nature12787PMID24670763
Cheng, J. H., Pan, D. Z., Tsai, Z. T. & Tsai, H. K.(2015). Genome-wide analysis of enhancer RNA in gene regulation across 12 mouse tissues. Sci. Rep. 5, 12648 DOI:10.1038/srep12648PMC4518263
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 19 июня 2018 года.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии