Теорема Дилуорса в комбинаторике — утверждение, характеризующее экстремальное свойство для частично упорядоченных множеств.
Теорема была доказана американским математиком Робертом Дилуорсом[en], (1914—1993), главной областью исследований которого была теория решёток.
Пусть — количество элементов наибольшей антицепи A данного конечного частично упорядоченного множества . Теорема Дилуорса утверждает, что можно разбить на попарно непересекающихся цепей.
Другими словами, минимальное число непересекающихся цепей (множество P), которые в совокупности содержат все элементы частично упорядоченного множества , равно максимально возможному числу элементов в подмножестве A множества , состоящем из попарно несравнимых элементов, если это число конечно[1]. Шириной частично упорядоченного множества называется число .
Примечание: Два элемента частично упорядоченного множества называются сравнимыми, если они образуют цепь, в противном случае они называются несравнимыми[1].
Эквивалентная формулировка теоремы Дилуорса утверждает, что в любом конечном частично упорядоченном множестве максимальное число элементов в любой антицепи равно минимальному числу разбиения множества на цепи. Версия теоремы для бесконечных частично упорядоченных множеств утверждает, что частично упорядоченное множество имеет конечную ширину w тогда и только тогда, когда его можно разбить на w цепей, но не меньше.
Следующее доказательство по индукции по размеру частично упорядоченного множества основывается на доказательстве Галвина (Galvin 1994).
Пусть — конечное частично упорядоченное множество. Утверждение тривиально, если пусто. Так что предположим, что имеет как минимум один элемент, и пусть — максимальный элемент .
По предположению индукции, для некоторого целого частично упорядоченное множество можно покрыть непересекающимися цепями и имеет по меньшей мере одну антицепь размера . Ясно, что для . Для пусть — максимальный элемент в , который принадлежит антицепи размера в и множеству . Мы утверждаем, что — антицепь. Пусть — антицепь размера , содержащая . Зафиксируем произвольные различные индексы и . Тогда . Пусть . Тогда по определению . Отсюда следует, что , поскольку . Если обменять роли и , мы получим . Это доказывает, что является антицепью.
Вернёмся к . Предположим сначала, что для некоторого . Пусть — цепь . Тогда вследствие выбора не содержит антицепь размера . Из предположения индукции следует, что можно покрыть непересекающимися цепями, поскольку является антицепью размера в . Таким образом, можно покрыть непересекающимися цепями, что и требовалось.
Теперь, если для каждого , то является антицепью размера в (поскольку — максимальное в ). Таким образом, может быть покрыто цепями , что завершает доказательство.
Подобно другим результатам комбинаторики теорема Дилуорса эквивалентна теореме Кёнига о паросочетаниях на двудольных графах и некоторым другим теоремам, включая теорему Холла о свадьбах (Fulkerson 1956).
Для доказательства теоремы Дилуорса для частично упорядоченного множества S с n элементами, используя теорему Кёнига, определим двудольный граф G = (U,V,E), где U = V = S и (u,v) является ребром в G, если u < v в S. По теореме Кёнига существует паросочетание M в G, и множество вершин C в G, такие, что каждое ребро из графа содержит, по крайней мере, одну вершину из C и оба множества, M и C, имеют одно и то же число элементов m. Пусть A — множество элементов S, которым не соответствует никакая вершина в C. Тогда A имеет как минимум n — m элементов (возможно больше, если C содержит вершины, соответствующие одному и тому же элементу на обоих сторонах двудольного графа). Пусть P — семейство цепей, образованных включением x и y в одну цепочку, когда существует ребро (x,y) в M. Тогда P имеет n — m цепей. Таким образом, мы сконструировали антицепь и разложение на цепи с тем же числом элементов в множестве.
Для доказательства теоремы Кёнига из теоремы Дилуорса для двудольного графа G = (U,V,E) образуем частичный порядок на вершинах графа G, полагая u < v в точности, когда u содержится в U, v содержится V и существует ребро из E из u в v. По теореме Дилуорса существует антицепь A и разложение на цепи P, оба множества одного размера. Но нетривиальными цепями в частичном порядке могут быть только пары элементов, соответствующих рёбрам графа, так что нетривиальные цепи из P образуют паросочетание в графе. Дополнение A образует покрытие вершин G с тем же числом элементов, что и в паросочетании.
Эта связь с двудольными паросочетаниями позволяет вычислить ширину любого упорядоченного множества за полиномиальное время.
Теорема Дилуорса для неограниченных частично упорядоченных множеств утверждает, что такое множество имеет ограниченную ширину w в том и только в том случае, когда оно может быть разложено на w цепей. Предположим, что бесконечное частично упорядоченное множество P имеет ширину w, что означает, что любая антицепь содержит не более конечного числа w элементов. Для любого подмножества S множества P разложение на w цепей (если существует) можно описать как раскраска графа несравнимости S (граф, имеющий элементы S в качестве вершин и рёбра для несравнимых вершин), используя w цветов. Любой класс расцветки графа несравнимости должен быть цепью. В предположении, что P имеет ширину w, по версии теоремы Дилуорса для конечного случая, любое конечное подмножество S множества P имеет w-цветную раскраску графа несравнимости. Таким образом, по теореме де Брейна–Эрдёша[en], P сам также имеет w-цветную раскраску графа несравнимости, а это есть желаемое разделение на цепи (Harzheim 2005).
Однако теорема не обобщается так просто на случай для частично упорядоченных множеств, когда ширина не ограничена. В этом случае размер максимальной антицепи и минимального числа цепей, необходимых для покрытия, могут существенно отличаться. В частности, для любого бесконечного кардинального числа κ существует бесконечное частично упорядоченное множество с шириной ℵ0, разделение которого на цепи имеет не меньше κ цепей (Harzheim 2005).
Перлес (Perles 1963) рассматривает аналогичную теореме Дилуорса теорему для неограниченного случая.
Теорема, двойственная теореме Дилуорса, утверждает, что размер наибольшей цепи в частичном порядке (конечный случай) равен наименьшему числу антицепей, на которые можно разложить частичный порядок (Mirsky 1971). Доказательство этой теоремы много проще доказательства теоремы Дилуорса. Для любого элемента x возьмём цепи, имеющие x в качестве максимального элемента, и пусть N(x) означает размер наибольшей из этих x-максимальных цепей. Тогда каждое множество N−1(i), состоящее из элементов, которые имеют одинаковые значения N, является антицепью, и размер этого разделения частично упорядоченного множества на антицепи равно размеру наибольшей цепи.
Граф сравнимости — это неориентированный граф, образованный из частичного порядка путём создания вершин для каждого элемента порядка и рёбер для любых двух сравнимых элементов. Таким образом, клика в графе сравнимости соответствует цепи, а независимое множество соответствует антицепи. Любой Порождённый подграф графа сравнимости сам является графом сравнимости, образованным из частичного порядка путём сужения на подмножество элементов.
Неориентированный граф является совершенным, если в каждом порождённом подграфе хроматическое число равно размеру наибольшей клики. Любой граф сравнимости является совершенным — это как раз теорема Мирского, пересказанная в терминах теории графов (Berge, Chvátal 1984). По теореме о совершенных графах Ловаса (Lovász 1972), дополнение любого совершенного графа является также совершенным графом. Таким образом, дополнение любого графа сравнимости является совершенным. Это, по существу, та же теорема Дилуорса, сформулированная в терминах теории графов (Berge, Chvátal 1984). Таким образом, свойство дополнительности совершенных графов может дать альтернативное доказательство теоремы Дилуорса.
Булевская решётка Bn — это степень множества X из n элементов — скажем, {1, 2, …, n} — упорядоченное по включению, или, формально, (2[n], ⊆). Теорема Спернера[en] утверждает, что максимальная антицепь в Bn имеет размер, не превосходящий
Другими словами, наибольшее семейство подмножеств несравнимости множеств X получается выбором подмножеств X, которые имеют среднее значение. Неравенство Любелла–Ямамото–Мешалкина[en] также имеет отношение к антицепям в степенях множества и может быть использовано для доказательства теорема Спернера.
Если упорядочить целые числа в интервале [1, 2n] по делимости, подынтервал [n + 1, 2n] образует антицепь размером n. Разложение этого частичного порядка на n цепей легко получить: для каждого нечётного m в [1,2n] образуем цепь из чисел вида m2i. Таким образом, по теореме Дилуорса, ширина этого частичного порядка равна n.
Теорему Эрдёша — Секереша о монотонных подпоследовательностях можно интерпретировать как приложение теоремы Дилуорса к частичным порядкам размерности[en] два (Steele 1995).
«Выпуклая размерность» антиматроида[en] определяется как минимальное число цепей, необходимых для определения антиматроида, и теорему Дилуорса можно использовать, чтобы показать, что она равна ширине связанного частичного порядка. Эта связь приводит к линейному по времени работы алгоритму для поиска выпуклой размерности (Edelman, Saks 1988).
|title =
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .