Двудо́льный граф или бигра́ф — это математический термин теории графов, обозначающий граф, множество вершин которого можно разбить на две части таким образом, что каждое ребро графа соединяет какую-то вершину из одной части с какой-то вершиной другой части, то есть не существует ребра, соединяющего две вершины из одной и той же части.
Неориентированный граф называется двудольным, если множество его вершин можно разбить на две части , так, что
В этом случае, подмножества вершин и называются долями двудольного графа .
Двудольный граф называется полным двудольным (это понятие отлично от полного графа; то есть, такого, в котором каждая пара вершин соединена ребром), если для каждой пары вершин существует ребро . Для
такой граф обозначается символом .
Двудольные графы естественно возникают при моделировании отношений между двумя различными классами объектов. К примеру граф футболистов и клубов, ребро соединяет соответствующего игрока и клуб, если игрок играл в этом клубе. Более абстрактные примеры двудольных графов:
Для того, чтобы проверить граф на предмет двудольности, достаточно в каждой компоненте связности выбрать любую вершину и помечать оставшиеся вершины во время обхода графа (например, поиском в ширину) поочерёдно как чётные и нечётные (см. иллюстрацию). Если при этом не возникнет конфликта, все чётные вершины образуют множество , а все нечётные — .
В этой статье не хватает ссылок на источники информации. |
![]() |
Двудольный граф на Викискладе |
---|
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .