WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Аномальное течение гелия-II

Сверхтеку́честь — способность вещества в особом состоянии (квантовой жидкости), возникающем при температурах, близких к абсолютному нулю (термодинамическая фаза), протекать через узкие щели и капилляры без трения. До недавнего времени сверхтекучесть была известна только у жидкого гелия, однако в последние годы[когда?] сверхтекучесть была обнаружена и в других системах: в разрежённых атомных бозе-конденсатах, твёрдом гелии.

Сверхтекучесть объясняется следующим образом. Поскольку атомы гелия являются бозонами[уточнить], квантовая механика допускает нахождение в одном состоянии произвольного числа частиц. Вблизи абсолютного нуля температур все атомы гелия оказываются в основном энергетическом состоянии. Поскольку энергия состояний дискретна, атом может получить не любую энергию, а только такую, которая равна энергетическому зазору между соседними уровнями энергии. Но при низкой температуре энергия столкновений может оказаться меньше этой величины, в результате чего рассеяние энергии попросту не будет происходить. Жидкость будет течь без трения.

История открытия

Почтовая марка России 2000 года

Сверхтекучесть жидкого гелия-II ниже лямбда-точки (T = 2,172 К) была экспериментально открыта в 1938 году П. Л. Капицей (Нобелевская премия по физике за 1978 год) и Джоном Алленом. Уже до этого было известно, что при прохождении этой точки жидкий гелий испытывает фазовый переход, переходя из полностью «нормального» состояния (называемого гелий-I) в новое состояние так называемого гелия-II, однако только Капица показал, что гелий-II течёт вообще (в пределах экспериментальных погрешностей) без трения.

Теория явления сверхтекучего гелия-II была разработана Л. Д. Ландау (Нобелевская премия по физике за 1962 год).

Основные факты

На сегодняшний день установлено, что коэффициент вязкости у гелия-II меньше 10−12 Па·с, в то время как у гелия-I вблизи температуры 4,22 К этот коэффициент имеет величину порядка 10−6 Па·с.

Двухжидкостная модель гелия-II

Рис.1 Относительная доля нормальной компоненты в гелии-II

В рамках двухжидкостной модели (также известной как «двухкомпонентная модель»), гелий-II представляет собой смесь двух взаимопроникающих жидкостей: сверхтекучей и нормальной компонент. Сверхтекучая компонента представляет собой собственно жидкий гелий, находящийся в квантово-коррелированном состоянии, в некоторой степени аналогичном состоянию бозе-конденсата (однако, в отличие от конденсата атомов разрежённого газа, взаимодействие между атомами гелия в жидкости достаточно сильно, поэтому теория бозе-конденсата неприменима впрямую к жидкому гелию). Эта компонента движется без трения, обладает нулевой температурой и не участвует в переносе энергии в форме теплоты. Нормальная компонента представляет собой газ квазичастиц двух типов: фононов и ротонов, то есть элементарных возбуждений квантовокоррелированной жидкости; она движется с трением и участвует в переносе энергии.

При нулевой температуре в гелии отсутствует свободная энергия, которую можно было бы потратить на рождение квазичастиц, и поэтому гелий находится полностью в сверхтекучем состоянии. При повышении температуры плотность газа квазичастиц (прежде всего, фононов) растёт, и доля сверхтекучей компоненты падает. Вблизи температуры лямбда-точки концентрация квазичастиц становится столь велика, что они образуют уже не газ, а жидкость квазичастиц, и наконец при превышении температуры лямбда-точки макроскопическая квантовая когерентность теряется, и сверхтекучая компонента пропадает вовсе. Относительная доля нормальной компоненты показана на Рис. 1.

При протекании гелия сквозь щели с малой скоростью, сверхтекучая компонента, по определению, обтекает все препятствия без потери кинетической энергии, то есть без трения. Трение могло бы возникнуть, если бы какой-либо выступ щели порождал квазичастицы, уносящие в разные стороны импульс жидкости. Однако такое явление при малых скоростях течения энергетически невыгодно, и только при превышении критической скорости течения начинают генерироваться ротоны.

Эта модель, во-первых, хорошо объясняет разнообразные термомеханические, светомеханические и другие явления, наблюдающиеся в гелии-II, а во-вторых, прочно базируется на квантовой механике.

Сверхтекучесть в иных системах

  • Построена сверхтекучая модель атомного ядра, которая достаточно хорошо описывает экспериментальные данные[1].
  • В 1995 году в экспериментах с разрежёнными газами щелочных металлов были достигнуты достаточно низкие температуры для того, чтобы газ перешёл в состояние бозе-эйнштейновского конденсата. Как и ожидалось на основании теоретических вычислений, полученный конденсат вёл себя как сверхтекучая жидкость. В последующих экспериментах было установлено, что при движении тел сквозь этот конденсат со скоростями меньше критической никакой передачи энергии от тела к конденсату не происходит.
  • В 2000 году Ян Петер Тоэнниэс демонстрирует сверхтекучесть водорода при 0,15 K[2]
  • В 2004 году было объявлено об открытии сверхтекучести и у твёрдого гелия. Последующие исследования, однако, показали, что ситуация далеко не столь проста, и потому говорить об экспериментальном обнаружении этого явления пока преждевременно.
  • С 2004 года, на основании результатов ряда теоретических работ[3] предполагается, что при давлениях порядка 4 миллионов атмосфер и выше водород становится неспособным переходить в твёрдую фазу при любом охлаждении (как и гелий при нормальном давлении) образуя тем самым сверхтекучую жидкость. Прямые экспериментальные подтверждения или опровержения пока отсутствуют.
  • Существуют также работы, предсказывающие сверхтекучесть в холодном нейтронном или кварковом агрегатном состоянии. Это может оказаться важным для понимания физики нейтронных и кварковых звёзд.
  • В 2005 году была открыта сверхтекучесть в холодном разрежённом газе фермионов[4].
  • В 2009 году была продемонстрирована сверхтекучесть типа «supersolid» в холодном разрежённом газе рубидия[5].

Современные направления исследования

  • Турбулентность в сверхтекучей жидкости
  • Сверхтекучесть в системах с внутренними степенями свободы
  • Связь сверхпроводящих и сверхтекучих фаз
  • Спиновая сверхтекучесть
  • Поиск новых веществ со сверхтекучими фазами

Высокотемпературная сверхтекучесть

Высокотемпературная сверхтекучесть — термин, относящийся к явлениям, напоминающим обычную «низкотемпературную» сверхтекучесть, проявляющимся при комнатных температурах. Физика этого явления также отличается от физики обычной сверхтекучести. Например, течение воды в трубе круглого сечения обладает свойствами высокотемпературной сверхтекучести. Это проявляется в том, что значение числа Рейнольдса, при котором происходит переход к турбулентному режиму, превосходит на два порядка значения для труб другого сечения, что можно истолковать как понижение на столько же порядков эффективной вязкости. Это можно объяснить, если — так же, как и в теории обычной сверхтекучести — представить жидкость (воду) как состоящую из двух компонент — нормальной и сверхтекучей. Плотность сверхтекучей компоненты примерно на два порядка превышает плотность нормальной компоненты, что и объясняет увеличение на столько же значение критического числа Рейнольдса, которое зависит от плотности нормальной компоненты.

Физика этого явления связана с учётом взаимодействия волн плотности в жидкости и упругих волн изгиба в стенках трубы. За счёт этой связи происходит ослабление отталкивания одноимённых флуктуаций плотности жидкости благодаря экранированию его указанным взаимодействием. Условие экранирования совпадает с условием Ландау обычной сверхтекучести. Спектр возбуждений в рассматриваемой системе имеет при малых волновых числах фононный характер, а при звуковых скоростях течения обладает также характерным ротонным минимумом, напоминая спектр возбуждений в сверхтекучем гелии.[источник не указан 380 дней]

Явление высокотемпературной сверхтекучести может иметь место при движении морских животных (дельфинов) в воде, позволяя им развивать большую скорость. Первоначальные оценки необходимых для этого мышечных усилий при условии турбулентного обтекания показали, что эти усилия превышают возможности дельфинов в 10 раз (парадокс Грея). Впоследствии выяснилось, что благодаря строению кожи дельфина турбулентность гасится благодаря демпфирующему влиянию кожи и обтекающий поток ламинаризуется. Высказывалось мнение, что демпфирование — активный процесс, регулируемый центральной нервной системой дельфина.[источник не указан 380 дней]

Это явление использовалось на практике (М. Крамер, Германия, 1938 г.) для разработки специального покрытия торпед (ламинофоло), позволившего без увеличения мощности двигателя увеличить их скорость в 1,5 — 2 раза. В России в 1920-х годах изобретатель П. В. Митурич предложил конструкцию судна, у которого движителем выступал гибкий корпус, совершающий волнообразные движения.[источник не указан 380 дней]

Практическое использование. Современная практика

Практическое использование. Будущие перспективы использования

Примечания

См. также

Ссылки


Обзорные статьи

Литература

  • Кресин В. З. Сверхпроводимость и сверхтекучесть. М.: Наука, 1978. — 187 с.
  • Бондарев Б. В. Метод матриц плотности в квантовой теории сверхтекучести. М.: Спутник, 2014. — 91 с.
  • Тилли Д. Р., Тилли Дж. Свехтекучесть и сверхпроводимость. М.: Мир, 1977. — 304 с.
  • Паттерман С. Гидродинамика сверхтекучей жидкости. М.: Мир, 1978. — 520 с.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии