WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В теории графов рёберно-транзитивным графом называется граф G такой, что для любых двух рёбер e1 и e2 графа G, существует автоморфизм графа G, который отображает e1 в e2[1].

Другими словами, граф рёберно-транзитивен, если его группа автоморфизма действует транзитивно на его рёбрах.

Примеры и свойства

Граф Грея является рёберно-транзитивным и регулярным, но не вершинно-транзитивным.

Рёберно-транзитивные графы включает все полные двудольные графы , и все симметричные графы, такие как вершины и рёбра куба[1]. Симметричные графы также вершинно-транзитивны (если они связны), но в общем случае рёберно-транзитивные графы не обязательно вершинно-транзитивны. Граф Грея является примером графа, который является рёберно-транзитивным, но не вершинно-транзитивным. Все такие графы являются двудольными[1] и поэтому могут быть раскрашены всего в два цвета.

Рёберно-транзитивный граф, являющийся также регулярным, но не вершинно-транзитивным, называется полусимметричным. Граф Грея снова служит примером. Рёберно-транзитивный граф должен быть двудольным и либо полусимметричным, либо бирегулярным[en][2].

См. также

Примечания

  1. 1 2 3 Norman Biggs. Algebraic Graph Theory. — 2nd ed.. — Cambridge, 1993. ISBN 0-521-45897-8.
  2. Josef Lauri , Raffaele Scapellato. Topics in Graph Automorphisms and Reconstruction. — Cambridge University Press, 2003. С. 20—21. ISBN 9780521529037.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии