WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Носи́тель фу́нкции — замыкание множества, на котором функция отлична от нуля.

Носитель классической функции

Носитель функции  — это замыкание подмножества , на котором вещественнозначная функция не обращается в нуль:

Наиболее распространённым является случай, когда функция определена на топологическом пространстве и является непрерывной. В таком случае носитель определяется как наименьшее замкнутое подмножество , за пределами которого равняется нулю.

Компактный носитель

Функции с компактным носителем на  — те, носитель которых является компактным подмножеством .

Например, если  — это вещественная прямая, то все непрерывные функции, обнуляющиеся при , являются функциями с компактным носителем.

Функция называется финитной, если её носитель компактен.

Носитель обобщённой функции

Также можно ввести понятие носителя для обобщённой функции, то есть для функционала на множестве бесконечногладких финитных функций.

Формальное определение

Рассмотрим обобщённую функцию и все множества такие, что если финитная функция обнуляется на множестве , то значение равно 0.

Наименьшее (по включению) из таких множеств называется носителем обобщённой функции . (Иначе можно сказать, что является пересечением всех таких ).

Стоит отметить, что носитель обобщённой функции будет непустым компактным множеством.

Замечание

Заметим, что такое определение носителя не совпадает с классическим. Действительно, обобщённая функция определена на пространстве бесконечно гладких финитных функций , а значит, классический носитель должен быть подмножеством , в то время как носитель обобщённой функции есть подмножество .

Примеры

В качестве примера можно рассмотреть функцию Дирака .

Возьмём любую финитную функцию с носителем, не включающим точку 0. Так как ( применяется как линейный функционал к ) равно нулю для таких функций, мы можем сказать, что носитель  — это только точка .

Сингулярный носитель

В анализе Фурье в частности, интересно изучить сингулярный носитель обобщённой функции. Он имеет интуитивную интерпретацию, как набор точек, в которых «обобщённая функция не сводится к обычной».

Формальное определение

Пусть  — обобщённая функция. Её можно представить в виде , где  — регулярная обобщённая функция, а  — сингулярная обобщённая функция. (Такое представление, вообще говоря, не единственно.)

Пересечение носителей по всем возможным разложениям называется сингулярным носителем обобщённой функции .

Классическое обозначение сингулярного носителя .

Примеры

Так, сингулярным носителем для функции Дирака является точка 0.

В данном частном случае сингулярный носитель и просто носитель обобщённой функции совпадают. Однако это не есть общее свойство. Например, для обобщённой функции, действующей по формуле

носителем будет отрезок , а сингулярным носителем точка 0.

Другим примером является преобразование Фурье для шаговой функции Хевисайда может быть рассмотрено с точностью до константы как , за исключением точки, в которой . Так как это очевидно особая точка, то более точным является формулировка, что преобразование в качестве распределения имеет сингулярный носитель .

Для распределений с несколькими переменными, сингулярные носители позволяют определять множества волнового фронта и понять принцип Гюйгенса в терминах математического анализа. Сингулярные носители также могут быть использованы для понимания феноменов, специфичных для теории распределений, таких как попытки перемножения распределений (возведение в квадрат дельты-функции Дирака невозможно, в основном потому, что сингулярные носители распределений, которые перемножаются должны быть разделены).

Важное применение сингулярный носитель находит в теории псевдодифференциальных операторов (ПДО), в частности в теореме о псевдолокальности ПДО.

Носитель меры

Так как меры (включая вероятностные меры) на вещественной прямой являются частными случаями обобщённых функций (распределений), мы также можем говорить о носителе меры таким же образом.

См. также

Литература

  • Шубин М. А. Псевдодифференциальные операторы и спектральная теория. — 2-е изд. — М.: «Добросвет», 2003.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии