Коническая комбинация (коническая сумма, взвешенная сумма) — операция над конечным набором векторов в евклидовом пространстве, сопоставляющая набору вектор вида:
где все числа удовлетворяют условию [1][2].
Название связано с фактом, что коническая сумма векторов определяет конус (возможно, в подпространстве меньшей размерности).
Коническая оболочка — множество всех конических комбинаций для данного множества , обозначается [1] или [2]. То есть:
По определению начало координат принадлежит всем коническим оболочкам.
Коническая оболочка множества является выпуклым множеством. Фактически, она является пересечением всех выпуклых конусов, содержащих , плюс начало координат[1]. Если является компактным пространством (в частности, если оно состоит из конечного числа точек), добавление начала координат к пересечению всех выпуклых конусов не требуется.
Всякой ненулевой конической комбинации соответствует выпуклая комбинация с коэффициентами делёнными на сумму коэффициентов исходной комбинации[1], в этой связи конические комбинации и конические оболочки могут рассматриваться как выпуклые комбинации и выпуклые оболочки в проективном пространстве.
Хотя выпуклая оболочка компактного множества является компактным множеством тоже, это неверно для конической оболочки, так как в общем случае она не ограничена. Более того, коническая оболочка компакта даже не обязательно будет замкнутым множеством — контрпримером служит сфера, проходящая через начало координат, конической оболочкой которой является открытое полупространство плюс начало координат. Однако если является непустым компактным множеством, не содержащим начало координат, коническая оболочка множества является замкнутым множеством[1].
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .