WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Интеграл Норлунда — Райса (метод Райса) — интеграл, связывающий конечных разностей с криволинейным интегралом в комплексной плоскости. Интеграл используется в теории конечных разностей, а также в Информатике и теории графов для оценки длины двоичного дерева.

Интеграл назван в честь Нильса Э. Норлунда[убрать шаблон] и Стефана О. Райса; Норлунд определил интеграл; Райс нашёл ему применение в методе перевала.

Определение

Для мероморфной функции конечную разность можно представить в виде:

где
 — Биномиальный коэффициент.

Переходя к интегрированию в окрестности полюсов точек и при условии, что функция полюсов не имеет, получим:

для .

Интеграл также можно записать в виде:

где
 — бета-функция Эйлера.

Если функция полиномиально ограничена, например, справа, то интеграл можно продлить направо до бесконечности, получив запись:

где

Цикл Пуассона — Меллина — Ньютона

Пусть  — некая последовательность и пусть  — некая производящая функция последовательности, причём

Используя преобразование Меллина, получим, что

Тогда можно найти исходную последовательность с помощью интеграла Норлунда — Райса:

где
 — гамма-функция.

Применение

Это интегральное представление интересно тем, что интеграл Норлунда — Райса часто может быть оценён с использованием методов асимптотического разложения или методом перевала.

См. также

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии