WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В математике, теорема двойственности Пуанкаре, названная в честь французского математика Анри Пуанкаре, является основным результатом о структуре групп гомологий и когомологий многообразия. Она утверждает, что все k-е группы когомологий n-мерного ориентируемого замкнутого многообразия M изоморфны (n  k)-м группам гомологий M :

История

Первоначальный вариант теоремы двойственности был сформулирован Пуанкаре без доказательства в 1893 году. Когомологии были изобретены лишь спустя два десятилетия после его смерти, поэтому идею двойственности он сформулировал в терминах чисел Бетти: k-е и (n k)-е числа Бетти замкнутого (компактного без границы) ориентируемого n-мерного многообразия равны:

Позже Пуанкаре дал доказательство этой теоремы в терминах двойственных триангуляций[1][2].

Современная формулировка

Современная формулировка двойственности Пуанкаре включает понятия гомологий и когомологий: если M — замкнутое ориентируемое n-мерное многообразие, k — целое число, то существует канонический изоморфизм k-й группы когомологий Hk(M) в (n  k)-ю группу гомологий Hn  k(M):

.

Этот изоморфизм определяется фундаментальным классом многообразия :

,

где коцикл, обозначает -умножение гомологических и когомологических классов. Здесь приведены гомологии и когомологии с коэффициентами в кольце целых чисел, но изоморфизм имеет место и для произвольного кольца коэффициентов.

Для некомпактных ориентируемых многообразий когомологии в этой формуле необходимо заменить на когомологии с компактным носителем.

Для группы гомологий и когомологий, по определению нулевые, соответственно, согласно двойственности Пуанкаре, группы гомологий и когомологий при на n-мерном многообразии являются нулевыми.

Билинейное спаривание

Пусть M замкнутое ориентируемое многообразие, обозначим через кручение группы , и её свободную часть; все группы гомологий берутся с целыми коэффициентами. Существуют билинейные отображения:

и

(Здесь — аддитивная факторгруппа группы рациональных чисел по целым.)

Первая форма называется индексом пересечения, вторая — коэффициентом зацепления. Индекс пересечения определяет невырожденную двойственность между свободными частями групп и , коэффициент зацепления — между кручениями групп и .

Утверждение о том, что эти билинейные спаривания определяют двойственность, означает, что отображения

и

являются изоморфизмами групп.

Этот результат является следствием двойственности Пуанкаре и теоремы об универсальных коэффициентах, которые дают равенства и . Таким образом, группы являются изоморфными, хотя и не существует естественного изоморфизма, и, аналогично, .

Ссылки

  1. Henri Poincaré, Complément à l'Analysis Situs, Rendiconti del Circolo matematico di Palermo, 13 (1899) pages 285-343
  2. Henri Poincaré, Second complément à l'Analysis Situs, Proceedings of the London Mathematical Society, 32 (1900), pages 277-308

Литература

  • Дольд А. Лекции по алгебраической топологии. — М.: Мир, 1976
  • Фоменко А. Т., Фукс Д. Б. Курс гомотопической топологии. — М.: Наука, 1989

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии