Граничные условия Дирихле первого рода — тип граничных условий, названный в честь немецкого математика П. Г. Дирихле.[1] Условие Дирихле, применённое к обыкновенным дифференциальным уравнениям или к дифференциальным уравнениям в частных производных, определяет поведение системы на границе области. Задача о нахождении таких условий называется задачей Дирихле.
Для обыкновенных дифференциальных уравнений условия Дирихле на границе интервала равны и , где и — некоторые константы.
Для дифференциальных уравнений в частных производных , где — оператор Лапласа, граничные условия в некоторой области равны где — известная функция, определённая на границе области
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .