WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Алгебра Валя (или Алгебра Валентины) — неассоциативная алгебра M над полем F, в которой бинарная мультипликативная операция подчиняется следующим аксиомам:

1. Условию антисимметричности:

для всех .

2. Тождеству Валентины:

для всех , где k=1,2,…,6, и

3. Условию билинейности:

для всех и .

Можно сказать, что M является алгеброй Валентины, если коммутант этой алгебры является лиевой подалгеброй. Любая алгебра Ли является алгеброй Валентины.

Билинейная мультипликативная операция в алгебре Валентины, так же как в алгебре Ли, не является ассоциативной операцией.

Существует следующая взаимосвязь между коммутантно-ассоциативной алгеброй и алгеброй Валя. Замена умножения g(A,B) в алгебре M операцией коммутирования [A,B]=g(A,B)-g(B,A), превращает её в алгебру . При этом, если M является коммутантно-ассоциативной алгеброй, то будет алгеброй Валя. Алгебра Валя является обобщением алгебры Ли, которая является частным примером алгебры Валентины.

Алгебры Валя могут быть использованы для описания диссипативных и негамильтоновых квантовых систем.

Примеры алгебры Валентины

(1) Любая конечная алгебра Валя является касательной алгеброй аналитических локальных коммутантно-ассоциативных луп (луп Валя), аналогично тому как конечные алгебры Ли являются касательными алгебрами аналитических локальных групп (групп Ли). Это утверждение является аналогом соответствия между аналитическими локальными группами (группами Ли) и алгебрами Ли.

(2) Билинейная операция для дифференциальных 1-форм

на симплектическом многообразии, определяемая по правилу

где  — 1-форма. Эта билинейная операция на множестве незамкнутых 1-форм задает алгебру Ли.

Если и являются замкнутыми 1-формами, то и

Эта билинейная операция на множестве замкнутых 1-форм задает алгебру Ли.

Эта билинейная операция на множестве незамкнутых дифференциальных 1-форм задает уже не алгебру Ли, а алгебру Валентины, которая не является алгеброй Ли.

См. также

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии