Этот ген кодирует ядерный белок, участвующий в гомологичной рекомбинации, теломере обслуживания длины, и репарации двойных разрывов ДНК. Сам по себе, белок имеет от 3' до 5' экзонуклеазную и эндонуклеазную активности. Белок образует комплекс с гомологом Rad50; этот комплекс необходим для негомологичного присоединения концов[en] ДНК и имеет увеличенную одноцепочечной ДНК-эндонуклеазу, и от 3' до 5' экзонуклеазную активность. В сочетании с ДНК -лигазой, этот белок способствует присоединению некомплементарных концов in vitro с использованием коротких гомологов вблизи концов фрагментов ДНК. Этот ген имеет псевдоген на хромосоме 3. Альтернативный сплайсинг этого гена приводит к двум вариантам транскрипции, кодирующих различные изоформы[2].
Ортологи MRE11A
Mre11, ортолог человеческого MRE11A, происходит от прокариотархейSulfolobus acidocaldarius[en][3]. В этом организме белок Mre11 взаимодействует с белком Rad50 и, кажется, играет активную роль в репарации повреждений ДНК, экспериментально созданных гамма-излучением[3]. Кроме того, во время мейоза в эукариотической протисте Tetrahymena Mre11 требуется для репарации повреждений ДНК, в данном случае двойных разрывов[4], с помощью процесса, который, вероятно, включает в себя гомологичную рекомбинацию. Эти наблюдения показывают, что человеческий MRE11A происходит от прокариотических и протистических предков белков Mre11, которые играли роль в начале процесса репарации повреждений ДНК.
При раке очень часто недостаёт экспрессии одного или более генов репарации ДНК, но сверхэкспрессия генов репарации ДНК при этом меньше обычной. Например, по крайней мере, 36 ферментов репарации ДНК, при мутационных нарушениях в клетках зародышевой линии, вызывают повышенный риск рака (наследственных синдромов рака[en])[7]. Аналогично, по крайней мере, 12 генов репарации ДНК, как было установлено, эпигенетически репрессированы в одном или нескольких видах рака[7]. Как правило, недостаточная экспрессии ферментов репарации ДНК приводит к увеличению не репарированных повреждений ДНК, которые посредством ошибки репликации приводят к мутациям и раку. Тем не менее, опосредованная MRE11 репарация MMEJ весьма неточна, так что в этом случае сверхэкспрессия, а не обычная экспрессия, по-видимому, приводит к раку.
↑ Lukaszewicz A, Howard-Till RA, Novatchkova M, Mochizuki K, Loidl J (October 2010). “MRE11 and COM1/SAE2 are required for double-strand break repair and efficient chromosome pairing during meiosis of the protist Tetrahymena”. Chromosoma. 119 (5): 505—18. DOI:10.1007/s00412-010-0274-9. PMID20422424.
↑ Sharma S, Javadekar SM, Pandey M, Srivastava M, Kumari R, Raghavan SC (2015). “Homology and enzymatic requirements of microhomology-dependent alternative end joining”. Cell Death Dis. 6: e1697. DOI:10.1038/cddis.2015.58. PMID25789972.
↑ Yuan SS, Hou MF, Hsieh YC, Huang CY, Lee YC, Chen YJ, Lo S (2012). “Role of MRE11 in cell proliferation, tumor invasion, and DNA repair in breast cancer”. J. Natl. Cancer Inst. 104 (19): 1485—502. DOI:10.1093/jnci/djs355. PMID22914783.
↑ Kim ST, Lim DS, Canman CE, Kastan MB (1999). “Substrate specificities and identification of putative substrates of ATM kinase family members”. J. Biol. Chem. 274 (53): 37538—43. DOI:10.1074/jbc.274.53.37538. PMID10608806.
1 2 Chiba N, Parvin JD (2001). “Redistribution of BRCA1 among four different protein complexes following replication blockage”. J. Biol. Chem. 276 (42): 38549—54. DOI:10.1074/jbc.M105227200. PMID11504724.
↑ Zhong Q, Chen CF, Li S, Chen Y, Wang CC, Xiao J, Chen PL, Sharp ZD, Lee WH (1999). “Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response”. Science. 285 (5428): 747—50. DOI:10.1126/science.285.5428.747. PMID10426999.
1 2 Goedecke W, Eijpe M, Offenberg HH, van Aalderen M, Heyting C (1999). “Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis”. Nat. Genet. 23 (2): 194—8. DOI:10.1038/13821. PMID10508516.
↑ Xu X, Stern DF (2003). “NFBD1/MDC1 regulates ionizing radiation-induced focus formation by DNA checkpoint signaling and repair factors”. FASEB J. 17 (13): 1842—8. DOI:10.1096/fj.03-0310com. PMID14519663.
1 2 Trujillo KM, Yuan SS, Lee EY, Sung P (1998). “Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95”. J. Biol. Chem. 273 (34): 21447—50. DOI:10.1074/jbc.273.34.21447. PMID9705271.
↑ Cerosaletti KM, Concannon P (2003). “Nibrin forkhead-associated domain and breast cancer C-terminal domain are both required for nuclear focus formation and phosphorylation”. J. Biol. Chem. 278 (24): 21944—51. DOI:10.1074/jbc.M211689200. PMID12679336.
↑ Zhu XD, Küster B, Mann M, Petrini JH, de Lange T (2000). “Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres”. Nat. Genet. 25 (3): 347—52. DOI:10.1038/77139. PMID10888888.
Carney JP, Maser RS, Olivares H; et al. (1998). “The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response”. Cell. 93 (3): 477—86. DOI:10.1016/S0092-8674(00)81175-7. PMID9590181.
Paull TT, Gellert M (1998). “The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks”. Mol. Cell. 1 (7): 969—79. DOI:10.1016/S1097-2765(00)80097-0. PMID9651580.
Trujillo KM, Yuan SS, Lee EY, Sung P (1998). “Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95”. J. Biol. Chem. 273 (34): 21447—50. DOI:10.1074/jbc.273.34.21447. PMID9705271.
Chamankhah M, Wei YF, Xiao W (1999). “Isolation of hMRE11B: failure to complement yeast mre11 defects due to species-specific protein interactions”. Gene. 225 (1–2): 107—16. DOI:10.1016/S0378-1119(98)00530-7. PMID9931460.
Zhong Q, Chen CF, Li S; et al. (1999). “Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response”. Science. 285 (5428): 747—50. DOI:10.1126/science.285.5428.747. PMID10426999.
Goedecke W, Eijpe M, Offenberg HH; et al. (1999). “Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis”. Nat. Genet. 23 (2): 194—8. DOI:10.1038/13821. PMID10508516.
Kim ST, Lim DS, Canman CE, Kastan MB (2000). “Substrate specificities and identification of putative substrates of ATM kinase family members”. J. Biol. Chem. 274 (53): 37538—43. DOI:10.1074/jbc.274.53.37538. PMID10608806.
Stewart GS, Maser RS, Stankovic T; et al. (2000). “The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder”. Cell. 99 (6): 577—87. DOI:10.1016/S0092-8674(00)81547-0. PMID10612394.
Gatei M, Young D, Cerosaletti KM; et al. (2000). “ATM-dependent phosphorylation of nibrin in response to radiation exposure”. Nat. Genet. 25 (1): 115—9. DOI:10.1038/75508. PMID10802669.
Zhu XD, Küster B, Mann M; et al. (2000). “Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres”. Nat. Genet. 25 (3): 347—52. DOI:10.1038/77139. PMID10888888.
Fukuda T, Sumiyoshi T, Takahashi M; et al. (2001). “Alterations of the double-strand break repair gene MRE11 in cancer”. Cancer Res. 61 (1): 23—6. PMID11196167.
Hopfner KP, Karcher A, Craig L; et al. (2001). “Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase”. Cell. 105 (4): 473—85. DOI:10.1016/S0092-8674(01)00335-X. PMID11371344.
Pitts SA, Kullar HS, Stankovic T; et al. (2001). “hMRE11: genomic structure and a null mutation identified in a transcript protected from nonsense-mediated mRNA decay”. Hum. Mol. Genet. 10 (11): 1155—62. DOI:10.1093/hmg/10.11.1155. PMID11371508.
Chiba N, Parvin JD (2001). “Redistribution of BRCA1 among four different protein complexes following replication blockage”. J. Biol. Chem. 276 (42): 38549—54. DOI:10.1074/jbc.M105227200. PMID11504724.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии