WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Барбье́ — теорема французского астронома и математика Ж. Барбье (фр.), описывающая длину кривых постоянной ширины. Сформулирована и доказана Барбье в 1860 году.

Формулировка

Длина любой кривой постоянной ширины равна .

Доказательства

Существует несколько доказательств теоремы Барбье:

  • Основанное на теории вероятностей или формуле Крофтона. Барбье доказал теорему, обобщающую известный ответ в задаче Бюффона о бросании иглы. Он показал, что при бросании выпуклой фигуры на плоскость, расчерченную линиями на расстоянии друг от друга, если фигура не может пересечь более одной из этих линий, то вероятность, что фигура пересечёт одну из линий, оказывается равной , где — периметр этой фигуры[2][3]. Поскольку фигура постоянной ширины удовлетворяет условию этой теоремы для , а вероятность пересечения в этом случае равна единице, её периметр должен равняться .[4]

Вариации и обобщения

Примечания

  1. Bogomolny A. The Theorem of Barbier (англ.). Cut The Knot. Архивировано 4 февраля 2012 года.
  2. Barbier E. Note sur le problème de l’aiguille et le jeu du joint couvert (фр.) // Journal de Mathématiques Pures et Appliquées. — 1860. — Vol. 5. — P. 273—286.
  3. Seneta Е., Parshall K. H., Jongmans F. Nineteenth-Century Developments in Geometric Probability: J. J. Sylvester, M. W. Crofton, J.-É. Barbier, and J. Bertrand (англ.) // Archive for History of Exact Sciences. — 2001. — Vol. 55, no. 6. — P. 501-524. DOI:10.1007/s004070100038.
  4. Bogomolny A. Math Surprises: An Example (англ.). Cut The Knot. Архивировано 4 февраля 2012 года.

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии