Симплициальная (или комбинаторная) d-сфера — это симплициальный комплекс, гомеоморфный d-мерной сфере. Некоторые симплициальные сферы появляются как границы выпуклого многогранника, однако в более высоких размерностях большинство симплициальных сфер не может быть получено таким образом.
Наиболее важная открытая проблема этой области — g-гипотеза, сформулированная Питером Макмалленом[en], который задал вопрос о возможном числе граней различных размерностей симплициальной сферы.
Из формулы Эйлера следует, что любая симплициальная 2-сфера с n вершины имеет 3n − 6 рёбер и 2n − 4 граней. Случай n = 4 реализуется в виде тетраэдра. При повторном осуществлении барицентрического подразделения легко построить симплициальные сферы для любого n ≥ 4. Однако Эрнст Штайниц дал описание 1-скелетов (графов рёбер) выпуклых многогранников в R3, из которого следует, что любая симплициальная 2-сфера является границей выпуклого многогранника.
Бранко Грюнбаум построил пример симплициальной сферы, не являющейся границей многомерного многогранника. Гиль Калай[en] доказал, что, фактически, «большая часть» симплициальных сфер не являются границами многогранников. Наименьший пример существует в размерности d = 4 и имеет f0 = 8 вершин.
Теорема о верхней границе[en] даёт верхние границы для числа fi i-граней любой симплициальной d-сферы с f0 = n вершинами. Гипотезу доказал для полиэдральных сфер в 1970 Питер Макмаллен[en][1], а для общих симплициальных сфер в 1975 доказал Ричард Стэнли[en].
Сформулированная Макмалленом в 1970 g-гипотеза ставит вопрос о полном описании f-векторов симплициональных d-сфер. Другими словами, каковы возможные наборы числа граней каждой размерности симплициальной d-сферы? Для полиэдральных сфер ответ задаётся g-теоремой, которую доказали в 1979 Биллера и Ли (существование) и Стэнли (необходимость). Было высказано предположение, что те же самые условия необходимы для общих симплициональных сфер. На 2015 год гипотеза оставалась открытой для d=5 и выше.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .